скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Розробка цифрових засобів ПЛІС в інтегрованому середовищі проектування MAX+PLUS II

Модуль логічного синтезу (Logic Synthesizer) використовує ряд алгоритмів, що зменшує використання ресурсів і прибирають дубльовану логіку, забезпечуючи тим самим ефективне використання структури логічного елемента для архітектури цілої родини пристроїв. Крім того логічний синтезатор шукає логіку для не поєднаних вузлів. Якщо він знаходить такий вузол, він прибирає примітиви, що відносяться до такого вузла.

Якщо проект не вміщується при монтажі в одному пристрої, модуль роздільника (Partitioner) розділяє базу даних на декілька ПЛІС однією і тіє ж самої родини, намагаючись при цьому розділити проект на мінімальну кількість пристроїв.

Використовуючи базу даних, поновлену модулем розбиття, модуль трасування (Fitter) приводить у відповідність вимоги проекту з відомими ресурсами одного або декількох пристроїв. Він призначає кожній логічний функц положення логічного елемента, що її реалізує та обирає відповідні шляхи взаємозв’язків і призначень виводів.

Екстрактор для функціонального тестування (Functional SNF Extractor) створює файл для функціонального тестування з розширенням .snf. Компілятор генерує цей файл перед синтезом проекту, він містить всі вузли, що присутні в початкових файлах проекту.

Екстрактор для тестування часових параметрів (Timing SNF Extractor) створює, якщо компіляція проекту пройшла без помилок, файл для тестування часових параметрів, що містить дані про часові параметри проекту. Розширення файлу також - .snf.

Екстрактор для тестування компонування (Linked SNF Extractor) створює файл (.snf) для тестування компонування декількох проектів (на рівні плати). Такий файл комбіну нформацію з snf-файлів двох типів: для тестування часових параметрів функціонального тестування, що були синтезовані для цих декількох проектів окремо.

Програма для запису вихідного файла в формат EDIF (EDIF Netlist Writer). Компілятор MAX+PLUS II може взаємодіяти з більшістю стандартних програмних засобів системи автоматичного проектування, що можуть читати файли стандартного формату EDIF 200 або EDIF 300. Даний модуль компілятора, що містить програму запису в формат EDIF, створює один або декілька файлів в форматі EDIF, з розширенням .edo.

Програма для запису вихідного файла в формат Verilog (Verilog Netlist Writer). Необов’язковий модуль програми запису в формат Verilog генерує вихідні файли з розширенням .vo, що містять інформацію про функції та їх часові параметри, отримані після проведення синтезу.

Програма для запису вихідного файла в формат VHDL (VHDL Netlist Writer). Необов’язковий модуль компілятора з програмою запису в формат VHDL генерує один або декілька вихідних файлів (.vho) на мові VHDL з синтаксисом 1987 або 1993.

Модуль асемблера (Assembler) перетворює призначення логічних елементів, виводів пристроїв, зроблених модулем трасування, в програмний образ для пристрою у вигляді одного або декількох двійкових об’єктних файлів для програматора (.pof) об’єктних файлів SRAM (.sof).

Утіліта діагностики проекту (Design Doctor Utility) перевіряє логіку кожного файлу проекту з метою виявлення елементів, які можуть викликати проблеми надійності на системному рівні. Ці проблеми виявляються лише після запуску пристрою “в залізі”. Існує можливість обирати одне з трьох попередніх правил обробки проекту з різними рівнями.


6. Загальн відомості про мову описання апаратури AHDL

Мова описання апаратури AHDL (Altera Hardware Description Language) розроблена фірмою Altera і призначена для описання комбінаційних і послідовних логічних пристроїв, групових операцій, цифрових автоматів з урахуванням особливостей ПЛІС фірми Altera. Він повністю інтегрується з системою автоматичного проектування MAX+PLUS II. Файли описання апаратури, написані на мові AHDL, мають розширення .tdf (Text design file). Для створення tdf-файлу можна використовувати як текстовий редактор системи MAX+PLUS II, так і будь-який інший. Проект, виконаний у вигляді tdf-файлу, компілюється і використовується для формування файлу програмування або завантаження ПЛІС фірми Altera.

Оператори та елементи мови AHDL є достатньо потужними та універсальними засобами описання алгоритмів функціонування цифрових пристроїв. Мова описання апаратури AHDL дає можливість створювати ієрархічн проекти в рамках однєї цієї мови або ж в ієрархічному проекті використовувати як tdf-файли, написані на мов AHDL, так і інші типи текстового описання апаратури. Для створення проектів на AHDL можна, звичайно, користуватись будь-яким текстовим редактором, але текстовий редактор системи MAX+PLUS II надає ряд додаткових можливостей для введення, компіляції і верифікації проекту.

Файли, створені на мові AHDL, легко інтегруються в рархічну структуру проекту. Система MAX+PLUS II дозволяє автоматично створювати символ компонента, алгоритм функціонування якого описано tdf-файлом, а потім вставити його в файл схемного описання (gdf-файл). Додатково, користувач може вводити власні функції, крім розроблених фірмою Altera близько 300 макрофункцій. Для всіх функцій, включених до макробібліотеки системи MAX+PLUS II, фірма Altera поставляє файли з розширенням .inc (include design file).

При розподіленні ресурсів пристроїв проектувальник може користуватись програмами текстового редактору або операторами мови AHDL. Крім того, розробник може перевірити синтаксис і зробити повну компіляцію. Будь-які помилки автоматично фіксуються обробником повідомлень та інформація про їх наявність з’являється у вікні текстового редактору, що оптимізує час розробки пристрою.


7. Реалізація в нтегрованому середовищі MAX+PLUS II базових пристроїв мікроелектроніки

7.1 Теоретичн відомості про тригери

Базовою структурною одиницею для побудови комбінаційних логічних схем є логічний елемент (вентиль). У випадку послідовних логічних схем роль такої структурної одиниці відіграє тригер. В даному розділ дипломної роботи буде розглянуто різні види тригерів.

7.1.1 RS-тригер

Умовне позначення RS-тригеру подано на рис. 7.1.1: RS-тригер має два входи R і S та два виходи Q1 та Q2. В тригерах виходи завжди знаходяться в протилежних (компланарних) станах. Іншою мовою, якщо на вході Q1 ми маємо логічну одиницю, то на виході Q2 буде рівень логічного нуля, і навпаки.

Входи R і S розглядуваного тригера називають відповідно входом встановлення 1 і входом встановлення 0.

 Виходи

 

Інверсний

 

Прямий

 

Встановлення 1

 

Встановлення 0

 

 Входи

 

 

 

Рис. 7.1.1. Умовне позначення RS-тригеру

Принцип роботи RS-тригеру ілюструє його таблиця дійсності (табл. 7.1.1).


Табл. 1.1. Таблиця дійсності RS-тригеру

Режим роботи Входи Виходи
S R

Q1

Q2

Вплив на вихід Q1

Заборонений стан 0 0 1 1

Заборонено –

не використовується

Встановлення 1 0 1 1 0

Для встановлення

Q1 в 1

Встановлення 0 1 0 0 1

Для встановлення

Q1 в 0

Збереження 1 1

Q1

Q2

Залежить від попереднього стану

При поданні на обидва входи тригера рівня логічного нуля (R=S=0) на обох виходах встановлюється логічна одиниця (Q1=Q2=1). Це заборонений стан тригеру; він не використовується. Згідно другому рядку таблиці дійсності на виході Q1 встановлюється логічна 1. В даному випадку кажуть, що тригер встановлений у стан 1. Згідно третього рядка, при S=1 R=0 відбувається скидання сигналу на вході Q1 (очищення виходу Q1) до рівня логічного 0. Це значить, що тригер встановлено у стан 0. Четвертий рядок таблиці дійсності відповідає R=S=1. В даному випадку тригер знаходиться в стані спокою: на виходах Q1 і Q2 зберігаються попередн комплементарні рівні сигналу. Це режим збереження.

Із табл. 7.1.1 видно, що встановлення тригеру у стан 1 (встановлення 1 на виході Q1) ініціює логічний 0 на вході S. Аналогічно встановлення тригеру в стан 0 (встановлення 0 на виході Q1) ніціює логічний 0 на вході R. Так як зміна стану RS-тригеру обумовлена появою 0 на одному з його входів, то вірогідніше, точнішим зображенням даної схеми було б умовне графічне зображення, приведене на рис. 7.1.2.


Рис. 7.1.2. Умовне графічне позначення RS-тригеру

Рис. 7.1.3. RS-тригер, побудований на логічних елементах І-НЕ

Особливу увагу треба звернути на інвертуючі кола у входів R та S. Вони показують, що активним рівнем сигналу для встановлення тригеру в стан 1 і 0 є рівень логічного 0 на одному із входів. RS-тригер часто називають RS-фіксатором, або тригером з роздільними входами.

7.1.2 Синхронний RS-тригер

Умовне графічне позначення для синхронного RS-тригеру показано на рис. 7.1.4. Воно подібне до звичайного RS-тригеру; відмінність поляга в появі одного додаткового, так званого синхронізуючого входу, що позначається CLK.


Рис. 7.1.4. Умовне графічне позначення синхронного RS-тригеру

Принцип роботи синхронного RS-тригеру ілюструє його таблиця дійсності (табл. 7.1.2).

Табл. 7.1.2. Таблиця дійсності синхронного RS-тригеру

Режим роботи Входи Виходи
CLK S R

Q1

Q2

Вплив на вихід Q1

Збереження

0 0 Без змін Без змін
Встановлення 0

0 1 0 1

Для встановлення

Q1 в 0

Встановлення 1

1 0 1 0

Для встановлення

Q1 в 1

Заборонений стан

1 1 1 1

Заборонено –

не використовується

Тільки верхні три рядки таблиці дійсності описують реальні режими роботи RS-тригеру. Нижній рядок відповідає забороненому стану ніколи не використовується. З таблиці видно, що стан виходів синхронного RS-тригеру може змінюватись лише в моменти приходу тактових імпульсів. В даному випадку кажуть, що тригер працює синхронно: процес переключення його знаходиться в синхронізмі з тактовими імпульсами.

Важливу роль в багатьох цифрових схемах відіграє ще одна характеристика RS-тригеру – наявність пам’яті. Дійсно, якщо тригер встановлений в стан 1 або 0, то він залишається в такому стані навіть при деяких змінах вхідних сигналів.


Рис. 7.1.5. Синхронний RS-тригер, побудований на логічних елементах І-НЕ

Щоб отримати синхронний RS-тригер, в схему звичайного RS-тригеру потрібно ввести два додаткових логічних елемента І-НЕ, як показано на рис. 7.1.5.

7.1.3 D-тригер

Умовне графічне позначення D-тригеру подано на рисунку 7.1.6. У цього тригера є лише один інформаційний вхід D, а також синхронізуюзуючий вхід CLK.

D-тригер часто називають тригером з затримкою. Слово затримка” означає те, що відбувається з даними (інформацією), що поступає на вхід D. Інформаційний сигнал (0 або 1), поступаючи на цей вхід затримується у тригері рівно на один такт, перед тим як з’явитись на виході Q.

Рис. 7.1.6. Умовне графічне позначення D-тригеру

Спрощена таблиця дійсності для D-тригеру подана нижче.


Табл. 7.1.3. Таблиця дійсності D-тригеру

Вхід Вихід

Dn

Qn+1

0 0
1 1

Слід звернути увагу, що сигнал на виході Q в такті n+1 повторює сигнал, що був на вході D в попередньому такті n.

D-тригер можливо отримати з тактуємого RS-тригеру, додаючи до останнього інвертор, як показано на рис. 7.1.7.

Рис. 7.1.7. Схема D-тригера

На рис. 7.1.8 показано умовне позначення типового серійно випускаємого D-тригеру. Він має два додаткових входи – попереднього встановлення (PS) і очищення (CLR). Логічний 0 на вході PS ініціює встановлення логічної 1 на виході Q. Логічний 0 на вході CLR ініціює очистку виходу Q.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.