скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Синтез та дослідження властивостей неорганічних сполук на основі LnBa2Cu3O7, LnxLa1-xBa2Cu3O7

Дипломная работа: Синтез та дослідження властивостей неорганічних сполук на основі LnBa2Cu3O7, LnxLa1-xBa2Cu3O7

Кваліфікаційна робота

з спеціальност 6.070300 - Хімія

Синтез та дослідження властивостей неорганічних сполук на основі LnBa2Cu3O7, LnxLa1-xBa2Cu3O7


Зміст

Вступ

Розділ 1. Літературний огляд

1.1 Кристалічні структури

1.2 Методи синтезу полікристалічних високотемпературних надпровідників

Розділ 2. Методика рентгенофазного аналізу

2.1 Основні відомості з фізики рентгенівських променів

2.2 Спектри випромінення променів

2.3 Спектри поглинання рентгенівських променів

2.4 Способи реєстрації рентгенівського випромінення

2.5 Проміри і розрахунок рентгенограми порошку

2.6 Ідентифікація речовин за міжплощинними відстанями

Розділ 3. Використання методу порошку в рентгеноструктурному аналізі

Розділ 4. Техніка експерименту і характеристика методів проведення дослідження

4.1 Синтез твердих розчинів LnBa2Cu3O7, LnxLa1-xBa2Cu3O7 (де Ln = Ho, Gd)

4.2 Рентгенографічні дослідження LnBa2Cu3O7, LnxLa1-xBa2Cu3O7

Розділ 5. Синтез твердих розчинів LnBa2Cu3O7 та їх структурно-графічн властивості

5.1 Комплексонометричне визначення вмісту рідкісноземельних елементів

Висновки

Список використаних джерел


Вступ

Відкриття явища високотемпературно надпровідності (ВТНП) викликало велику кількість досліджень як з метою вивчення природи ВТНП, так і у сфері її практичного використання. Вже на початку досліджень була відома невелика стійкість ВТНП зразків до дії різних хімічних факторів (води, карбон (IV) оксиду, водяного пару). З метою стабілізац високотемпературних надпровідникових матеріалів здійснено низку спроб введення лігуючих добавок. Головною перепоною на шляху створення технічних надпровідників на основі кераміки є низька струмонесуча здатність зразків. Тому синтез нових матеріалів, що мають високу критичну густину струму, є насьогодн актуальним.

Одним із найбільш перспективних матеріалів для практичного використання є сполуки на основі  (так звана фаза „ 123 ”), де Ln - рідкісноземельний елемент (РЗЕ).

Мета та задачі дослідження. Головною метою нашої роботи є синтез високотемпературних надпровідних матеріалів на основ оксидів рідкісноземельних елементів, а саме :  та .

Для пошуку нових ВТНП матеріалів нами здійснено розв’язання таких завдань :

підготовка та аналіз вихідної сировини, проведення синтезу ВТНП кристалічних матеріалів на основі  та  ;

дослідження властивостей синтезованих зразків ВТНП кераміки.

Наукова новизна одержаних результатів полягає у наступному :

вперше встановлено особливості утворення високотемпературних надпровідникових керамічних матеріалів на основі  та  при твердофазному спіканні оксидів, карбонатів та оксидів РЗЕ ;

встановлено умови протікання проміжних реакцій та утворення проміжних сполук ;

вперше застосовано метод рентгеноструктурного аналізу для встановлення складу одержаної ВТНП кераміки ( та ).

Практичне значення одержаних результатів. Наші дослідження мають безпосередній взаємозв’язок із практичними цілями. Слід зазначити, що з появою високотемпературних надпровідникових матеріалів з’явилися перспективи їх практичного застосування в магнітах, мережах передач електроенергії, ПЕОМ та інших приладах. Успіх практичного використання ВТНП матеріалів залежить від багатьох взаємозалежних властивостей надпровідників. Серед цих властивостей чинне місце має хімічна стабільність. Саме тому питання стабілізації надпровідних властивостей ВТНП сполук має дуже важливе практичне значення. Методи стабілізації, що досліджені нами, можна розглядати як потенційні засоби стабілізації надпровідних властивостей ВТНП сполук при їх практичному використанні.

Апробація результатів роботи. Основн результати апробовано на IX (2007) та X (2008) Всеукраїнській студентській конференції „ Актуальні проблеми природничих та гуманітарних наук у дослідженнях студентської молоді ” (м. Черкаси, ЧНУ).

Публікації. В матеріалах IX та X Всеукраїнської студентської наукової конференції „ Актуальні проблеми природничих та гуманітарних наук у дослідженнях студентської молоді ” (м. Черкаси, ЧНУ, 2007- 2008 р.) : Синтез та дослідження властивостей неорганічних сполук з надпровідниковими властивостями на основі оксидів рідкісноземельних елементів.


Розділ 1. Літературний огляд

1.1 Кристалічні структури

Практично всі матеріали, що мають критичну температуру переходу в надпровідний стан вище 77 К, є купратами. Спільним для всіх одержаних купрумвмісних надпровідних композицій є:

1. Структури фаз – похідні від структури перовскіту.

2. Структури мають велику кількість аніонних вакансій, концентрацію яких можна легко варіювати, змінюючи умови синтезу (температуру прожарювання, парціальний тиск кисню та інше.). Аніонні вакансії у подібних структурах створюються або шляхом гетеровалентного заміщення катіона, або в похідній структурній матриці є вакантні позиції, заповнення яких атомами кисню вимагає малих енергетичних витрат та не супроводжується руйнуванням структурної матриці. Так, наприклад, у структурі Sr2CuO3 внаслідок упорядкованості аніонних вакансій спостерігається сильна деформація перовскітної комірки (а=3,91 Å, b=3,48 Å [14]). Проникнення у вакантну аніонну позицію цієї структури надлишкових атомів кисню призводило до аномально малої відстані Cu-O, а можливі деформації вимагали більших енергетичних витрат. Тому для цієї структури є лише одна можливість варіювання концентрації аніонних вакансій: гетеровалентне заміщення атомів стронцію на одновалентні катіони.

3. В структурах є атоми купруму "формально" з різними ступенями окиснення (+2 та +3). Проте, мабуть, більш правильно стверджувати (що і було підтверджено експериментальними дослідженнями): унаслідок зміни кількості атомів кисню в структурах відбувається утворення дірок у зоні провідності (зниження рівня Фермі). Утворення зони провідності в шарі (CuO2) відбувається в наслідок перекриття орбіталі 3d1x2-y2, що має завдяки ефекту Яна Тейлора найбільшу енергію, та 2рх, 2ру-орбіталей атомів кисню, що розміщені в екваторіальних площинах.

4. Структури ВТНП оксидів – шаруваті, обов’язково їх елементом є наявність площин CuO2. Шари СuО2 вважаються активними компонентами у високотемпературних надпровідниках. Виділяють три різних типи Cu-O координації: квадрати CuO4, піраміди CuО5 та октаедри СuО6, що містять кисень у вершинах, а також над та під шаром CuO2 (рис. 1.1).

Рис. 1.1. Типи шарів Cu із різною Сu-О координацією: (а) октаедр СuО6, (б) піраміда CuО5, та (в) квадрат СuО4 [15].

Шари, що розташовані між шарами CuO2, та виконують функцію накопичення заряду, можуть мати набагато складнішу структуру ніж шари CuO2. Утворення шаруватих структур відбувається або завдяки впорядкуванню аніонних вакансій, або завдяки порушенню ідеальної послідовност укладки шарів уздовж осі 4-го порядку.

Рис. 1.2. Кристалічні структури купратів 214: фази Т, Т* та Т’ (R, R’ - рідкісноземельні елементи, А = Ba, Sr, Ca,Ce чи Th) [15].

Сполуки-214. Сполуки (R, R’)2-xAxCuO4, де R та R’ – рідкісноземельні елементи, А = Ba, Sr, Ca, Ce чи Th, мають Тс ≤ 36 К. В залежності від іонних радіусів R та R’ здатні утворювати три структурн фази Т, Т’ та Т* (рис. 1.2). Вони мають один шар CuO2 на формульну одиницю. Шар CuO2 містить цілий ряд октаедрів CuO6 в фазі Т, пірамід CuO5 в фазі Т*, та квадратів CuO4 у фазі Т’. Ці високотемпературні надпровідники мають тетрагональну симетрію [14,16-19].

Сполуки R-123. RBa2Cu3O7 (відомі як RBCO, або R-123) мають Тс до 100 К, де R = Y чи рідкісноземельні елементи за винятком Се чи Tb.

Рис. 1.3. Кристалічна структура сполук R123 (R - рідкісноземельний елемент, крім Ce чи Tb) [15].

Кристалічна структура сполук 123 - орторомбічна [16,20-22] (рис. 1.3). Вони містять два шари CuO2 та один шар ланцюжка CuO на формульну одиницю. Коли кисневий індекс стає менший за ~6,4, атоми кисню в ланцюжку CuO втрачають свій довго-лінійний порядок, і структура стає тетрагональною та не надпровідною [16,23].


1.2 Методи синтезу полікристалічних високотемпературних надпровідників

В 1911 р. Г. Камерлінг-Оннес відкрив надпровідниковість ртуті, охолодивши її рідким гелієм до температури 4,2 К. Як з’ясувалось пізніше, повна втрата електричного опору під час переходу в надпровідниковий стан є не єдиною незвичайною властивістю речовин. В 1933 р. В. Мейснер і Р. Оксенфельд експериментально встановили, що надпровідник повністю витісняє магнітне поле із свого об’єму (якщо індукція поля не перевищу критичного значення). „ Абсолютний ” діамагнетизм надпровідникового стану означає можливість вільно висіти магніту над чашою з надпровідника.

У вересні 1986 р. з’являється наукове повідомлення Г.Беднорца та А.Мюллера про те, що в керамічних зразках на основ Ba – La – Cu – O можлива високотемпературна надпровідність.

ВТНП – матеріали можуть бути використані у великій кількості технологічних новацій ХХІ ст. – від левітуючих (зависаючих) потягів на магнітній подушці та підшипників без тертя до медичних томографів, які дозволяють контролювати біотоки людського мозку [ 2 ]. ВТНП – матеріали одержують шляхом кристалізації продукту із розплаву протягом тижня, а для завершення процесу використовується хімічна реакція окиснення при низькій температурі. Без такої обробки матеріал не стає надпровідником і не спроможний зависати в магнітному полі.

Дефекти, або в більш загальному розумінн мікроструктури, визначають структурно важливі властивості матеріалу. Оскільки сумарна характеристика складу речовин, його агрегатного стану і алотропно модифікації можуть бути замінені більш загальним поняттям „ фаза ”, тому попередні визначення зміняться в більш загальне і більш просте:

матеріал = фаза (и) + мікроструктура.


Таким чином, матеріал – це реальна форма снування фази або сукупність фаз. І якщо хімік-синтетик обмежується одержанням ндивідуальних фаз, то матеріалознавцю крім цього необхідно сформувати оптимальну мікроструктуру. Часто ця задача набагато важча, ніж одержання ндивідуальної фази, особливо якщо необхідно відтворити методику у виробництві.

Звичайні ВТНП – матеріали, які отриман методом твердофазного синтезу, являють собою кераміку, мікроскопічні кристаліти ВТНП – фази розміщені в просторі відносно один одного і слабко взаємопов’язан між собою [ 4 ].

По-перше, шестикутні блоки-пігулки, з яких виготовлений ВТНП – п’єдестал, складається з крупнокристалічних доменів, кожен з яких являє собою пачку гігантських (0,1 – 1 см) пластичних кристалітів аркушів, епітаксіально (в одній кристалографічній орієнтації), що зрослися паралельно один до одного. По-друге, матеріал є композитом, в надпровідниковій матриці рівномірно розподілені ультродисперсні включення ненадпровідникових частинок. В результаті надпровідниковість матеріалу зберігалась, тому в тонкому поверхневому шарі зразка протікає струм, магнітне поле екранує зовнішнє поле. Саме це дозволило залучити ВТНП – матеріал в продуману форму і повністю реалізувати потенціал фізичного явища при високій температурі. Такий матеріал може висіти над і під магнітом, а також від невеликого поштовху обертатися в повітрі в будь-якому положенні, нехтуючи силою тяжіння.

Єдиний шлях отримання мікроструктури – це кристалізація розплаву, в якому швидкість дифузії більша, ніж в твердому тілі. Крім того, із-за відносно малої в’язкості розплаву можливе „ підстроювання формуючих анізотропних кристалітів відносно один одного. Все це створює умови для утворення оптимальної мікроструктури ВТНП – матеріалу.

Плавлення ВТНП – фаза пов’язана з хімічною реакцією розпаду : з твердого тіла складу  утворюється фаза іншого складу , рідина (розплав Y) і газ (кисень ) :

 (1)

В зворотному процесі – кристалізації – вс три різнорідних компонента (тверде тіло, рідина і газ) повинні бути „ зібран в ВТНП-фазу :

 (2)

Для протікання кристалізації (2) потрібна рушійна сила, відхилення від стану рівноваги, які призводять до виникненню потоків речовин і енергії. Згідно відомому принципу Ле Шательє, якщо на систему, яка знаходиться в стані рівноваги, вплинути будь-яким чином зовні (тиск, температура, концентрація), то система буде протидіяти зовнішньому втручанню. Існує кілька способів протікання кристалізації за бажаною схемою. При кристалізації з розплаву можна :

1) охолоджувати вихідну суміш з оптимально вибраною швидкістю dT/dt або досягти оптимального переохолодження Δ T, що частіше всього застосовується в експериментах ;

2) знижувати парціальний тиск кисню Δ ;

3) керувати градієнтами концентрац компонентів суміші ;

4) змінювати кількість і склад розплаву при контакті з пористою підкладкою.

Формування оптимальної мікроструктури пов’язане з закономірностями розвитку кристалітів, які початково виникають як при невеликих, так і при незначних відхиленнях системи від стану рівноваги. Природнім „ барометром ” нерівноваги розплаву прийнято вважати як пересичення по одному або по декількох компонентах, абсолютне відхилення від концентрац досягає при новій рівновазі, після чого виникає релаксація системи. Не так важливо, яким методом утворене пересичення, але його високий рівень необхідний для створення макрокількості речовини, що твердіє. Тобто, формування мікроструктури відбувається в нерівноважних, динамічних умовах. Тому доводиться вести пошук відтворених методів отримання матеріалу, які складаються з добре сформованих кристалітів оптимального розміру, взаємна орієнтація стабілізується міцними міжкристалічними контактами.

У деякому випадку (проведення процесу при певній температурі) концентрація йонів ітрію (або іншого рідкісноземельного елемента) в розплаві повинна перевищувати рівноважну, а вміст кисню відповідати стехіометрії реакції (2). При температурі вище області існування ВТНП-фази кристалізація неможлива. Якщо вміст кисню в розплаві малий, то навіть при оптимальній температурі і інтенсивному потоку йонів ітрію від частинок ненадпровідникової фази , які знаходяться в розплаві, може лише змінюватися середній розмір цих частинок, але кристалічна ВТНП-фаза  не утвориться.

Ще один випадок – коли розплав насичений киснем (наприклад, кристалізацію проводять на повітрі), а температура достатньо низька, щоб ВТНП-фаза  змогла сформуватися (‹100ْС). Здавалося б, все підготовлено для її утворення і залишається лише додатково забезпечити інтенсивний потік йонів ітрію в розплаві, але, на жаль, концентрація йонів ітрію різна від точки до точки, оскільки специфіка розчинення частинок фази  в розплаві, необхідна для протікання реакції (2), залежить від середнього розміру і загальної кількості. Крім того, розчинення займає деякий час із-за дифузії катіонів ітрію, яка призводить до виникнення індукційного періоду формування значно кристалічно фази .

Отже, процес кристалізації ВТНП-фази може повністю змінитися при невеликих відхиленнях від оптимальних умов для протікання реакції (2).

Ріст кристаліта з розплаву – лише друга (хоч основна) стадія процесу кристалізації. Їй передує утворення зародка – центру кристалізації, - якому може дати життя локальна флуктуація хімічного складу або температура в розплаві. Але для росту кристаліта одного виникнення зародка недостатньо, необхідно, щоб він був стабільний. Згідно класичним уявленням, в залежності від розміру, раптово утворений зародок може або „ вижити розвиватися далі, або розпастися, оскільки „об’ємна ” енергія, що виділяється повинна компенсувати роботу для формування нової межі розділу, а вона, в свою чергу, залежить від величини поверхневої енергії.

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.