скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Принципы организации параллелизма выполнения машинных команд в процессорах

Курсовая работа: Принципы организации параллелизма выполнения машинных команд в процессорах

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Южно-Уральский государственный университет

Кафедра прикладной математики

Курсовая работа

по дисциплине «Архитектура ЭВМ и ВС»

на тему: «Принципы организации параллелизма выполнения

машинных команд в процессорах»

Выполнила:студентка группы ММ-392

Соловьева М.Н.

Дата «___» «                               »2007 г.

Проверил:

Никитин Г.А.

Дата «___» «                               »2007 г.

Оценка__________________________

Челябинск

2007


содержание

введение. 3

1 Классификация параллельных ВС.. 5

1.1 Классификация Флинна. 5

1.2 Системы с общей и распределенной памятью.. 7

2 Конвейеры операций. 9

2.1 Конвейеры.. 9

2.2 Оценка производительности идеального конвейера. 10

2.3 Конфликты в конвейере и способы минимизации их влияния на производительность процессора. 13

3 Суперскалярные архитектуры.. 18

3.1 Работа суперскалярного конвейера. 18

3.2 Трудности реализации. 21

3.3 Историческая справка. 22

4 VLIW-архитектура. 25

4.1 Аппаратно-программный комплекс VLIW... 25

4.2 Устройство VLIW-процессора. 26

4.3 Принцип действия VLIW-компилятора. 27

4.4 Трудности реализации VLIW... 28

5 Предсказание переходов. 30

6 Матричные процессоры.. 35

6.1 Матричные процессоры.. 35

6.2 Векторный процессор. 36

6.3 Внутрипроцессорная многопоточность. 37

6.4 Многопоточность в Pentium 4. 39

7 Закон Амдала. Закон Густафсона. 42

7.1 Ускорение, эффективность, загрузка и качество. 42

7.2 Закон Амдала. 44

7.3 Закон Густафсона. 47

вывод. 49

список литературы.. 50

введение

Спрос на компьютеры, работающие с все более и более высокой скоростью, не прекращается. Астрономы пытаются воспроизвести всю историю Вселенной с момента большого взрыва и до сегодняшнего дня. Фармацевты хотели бы разрабатывать новые лекарственные препараты с помощью компьютеров, не принося в жертву легионы крыс. Разработчики летательных аппаратов могли бы получать лучшие результаты, если бы вместо строительства огромных аэродинамических труб моделировали свои конструкции на компьютере. Какими бы мощными ни были компьютеры, их возможностей никогда не хватит для решения многих нетривиальных задач (особенно научных, технических и промышленных).

Быстродействие процессоров растет, но у них постоянно возникают проблемы со скоростью передачи информации, поскольку скорость распространения электромагнитных волн в медных проводах и света в оптико-волоконных кабелях прежнему остается равной 20 см/нс, независимо от того, насколько умны инженеры компании Intel. Кроме того, чем быстрее работает процессор, тем сильнее он нагревается, поэтому возникает задача защиты его от перегрева.

Разработчики компьютеров стремятся к тому, чтобы повысить производительность своих машин. Один из способов заставить процессоры работать быстрее - повышение их тактовой частоты, однако при этом существуют технологические ограничения. Поэтому большинство разработчиков для повышения производительности при данной тактовой частоте процессора используют параллелизм (выполнение двух или более операций одновременно).

Существует две основные формы параллелизма: параллелизм на уровне команд и параллелизм на уровне процессоров. В первом случае параллелизм реализуется за счет запуска большого количества команд каждую секунду. Во втором случае над одним заданием работают одновременно несколько процессоров. Каждый подход имеет свои преимущества.

Параллелизм можно вводить на разных уровнях. На самом низком уровне он может быть реализован в процессоре за счет конвейеризации и суперскалярной архитектуры с несколькими функциональными блоками.

На следующем уровне возможно внедрение в систему внешних плат ЦП с улучшенными вычислительными возможностями. Как правило, в подключаемых процессорах реализуются специальные функции, такие как обработка сетевых пакетов, обработка мультимедийных данных, криптография. Производительность специализированных приложений за счет этих функций может быть повышена в 5-10 раз.

Чтобы повысить производительность в сто, тысячу или миллион раз, необходимо свести воедино многочисленные процессоры и обеспечить их эффективное взаимодействие. Этот принцип реализуется в виде больших мультипроцессорных систем и мультикомпьютеров (кластерных компьютеров). Естественно, объединение тысяч процессоров в единую систему порождает новые проблемы, которые нужно решать.

Наконец, в последнее время появилась возможность интеграции через Интернет целых организаций. В результате формируются слабо связанные распределенные вычислительные сетки, или решетки. Такие системы только начинают развиваться, но их потенциал весьма высок.

Когда два процессора или обрабатывающих элемента находятся рядом и обмениваются большими объемами данных с небольшими задержками, они называются сильно связанными (tightly coupled). Соответственно, когда два процессора или обрабатывающих элемента располагаются далеко друг от друга и обмениваются небольшими объемами данных с большими задержками, они называются слабо связанными (loosely coupled). [2]

1 Классификация параллельных ВС

 

1.1 Классификация Флинна

Даже краткое перечисление типов современных параллельных вычислительных систем (ВС) дает понять, что для ориентирования в этом многообразии необходима четкая система классификации. От ответа на главный вопрос — что заложить в основу классификации — зависит, насколько конкретная система классификации помогает разобраться с тем, что представляет собой архитектура ВС и насколько успешно данная архитектура позволяет решать определенный круг задач.

Общепринята удачная классификация ВС, которую предложил в 1970 г. Г. Флин (США). Основным определяющим архитектурным параметром он выбрал взаимодействие потока команд и потока данных (операндов и результатов).

ОКОД — «один поток команд — один поток данных» (SISD - «Single Instruction, Single Data»). В ЭВМ классической архитектуры ведется последовательная обработка команд и данных. Команды поступают одна за другой (за исключением точек ветвления программы), и для них из ОЗУ или регистров также последовательно поступают операнды. Одной команде (операции) соответствует один необходимый ей набор операндов. Представителями этого класса являются, прежде всего, классические фоннеймановские ВМ. То, что для увеличения скорости обработки команд и скорости выполнения арифметических операций может применяться конвейерная обработка, не имеет значения, поэтому в класс SISD од­новременно попадают как ВМ CDC 6600 со скалярными функциональными устройствами, так и CDC 7600 с конвейерными. Некоторые специалисты считают, что к SISD-системам можно причислить и векторно-конвейерные ВС, если рассматривать вектор как неделимый элемент данных для соответствующей команды.

Тип ОКМД— «один поток команд — много потоков данных» (SIMD — «Single Instruction — Multiple Data») охватывает ВС, в которых одной ко­мандой обрабатывается набор данных, множество данных, вектор, и вы­рабатывается множество результатов. Это векторные и матричные системы, в которых по одной команде выполняется одна и та же операция над всеми элементами массива вектора или матрицы, распределенными между процессорными (обрабатывающими) элементами ПЭ или процессо­рами. Принцип обработки показан на рисунке 1.2.

Отечественные векторные ВС — ПС-2000, ПС-2100. Допускают организацию матричной обработки. Классический пример матричной архитектуры - ILLIAC-IV (США).

К типу МКОД — «много потоков команд — один поток данных» (MISD — «Multiple Instruction — Single Data») принято относить векторный конвейер (обычно в составе ВС, чтобы подчеркнуть основной используемый принцип вычислений), например, в составе ВС Сгеу-1, «Электроника ССБИС». На векторном конвейере производится последовательная обработка одного потока данных многими обрабатывающими устройствами (ступенями, станциями) конвейера.

К такому же типу относится ВС, реализующая макроконвейер (ВС «Украина»). В ней задача, решаемая циклически, «разрезается» на последовательные этапы, закрепляемые за отдельными процессорами. Запускается конвейер многократного выполнения цикла, составляющего задачу.

Тип МКМД — «много потоков команд — много потоков данных» (MIMD — «Multiple Instruction — Multiple Data»). Класс предполагает на­личие в вычислительной системе множества устройств обработки команд, объединенных в единый комплекс и работающих каждое со своим потоком команд и данных. Класс MIMD чрезвычайно широк, поскольку включает в себя всевозможные мультипроцессорные системы. Кроме того, приобщение к классу MIMD зависит от трактовки. Так, ранее упоминавшиеся векторно-конвейерные ВС можно вполне отнести и к классу MIMD, если конвейерную обработку рассматривать как выполнение множества команд (операций ступеней конвейера) над множественным скалярным потоком.

Схема классификации Флинна вплоть до настоящего времени является наиболее распространенной при первоначальной оценке той или иной ВС, поскольку позволяет сразу оценить базовый принцип работы системы, чего часто бывает достаточно. Однако у классификации Флинна имеются и очевидные недостатки, например неспособность однозначно отнести некоторые архитектуры к тому или иному классу. Другая слабость — это чрезмерная насыщенность класса MIMD. Все это породило множественные попытки либо модифицировать классификацию Флинна, либо предложить иную систему классификации.

 

1.2 Системы с общей и распределенной памятью

Системы с общей (разделяемой) оперативной памятью образуют со­временный класс ВС — многопроцессорных супер-ЭВМ. Одинаковый доступ всех процессоров к программам и данным представляет широкие возможности организации параллельного вычислительного процесса (параллельных вычислений). Отсутствуют потери реальной производи­тельности на межпроцессорный (между задачами, процессами и т. д.) обмен данными).

Системы с распределенной памятью образуют вычислительные ком­плексы (ВК) — коллективы ЭВМ с межмашинным обменом для совместного решения задач (рис. 1.5б). В ВК объединяются вычислительные средства систем управления, решающие специальные наборы задач, взаимосвязанных по данным. Принято говорить, что такие ВК выполняют распределенные вычисления, а сами ВК называют распределенными ВК.

Другое, противоположное воплощение принципа МИМД — масспроцессорные или высокопараллельные архитектуры, объединяющие сотни — тысячи — десятки тысяч процессоров.

В современных супер-ЭВМ наметилась тенденция объединения двух принципов: общей (распределяемой) и распределенной (локальной) оперативной памяти (ЛОП). Такая структура используется в проекте МВК «Эльбрус-3» и «Эльбрус-ЗМ» .

2 Конвейеры операций

 

2.1 Конвейеры

Уже много лет известно, что главным препятствием высокой скорости выполнения команд является необходимость их вызова из памяти. Для разрешения этой проблемы можно вызывать команды из памяти заранее и хранить в специальном наборе регистров. Эта идея использовалась еще в 1959 году при разработке компьютера Stretch компании IBM, а набор регистров был назван буфером выборки с упреждением. Таким образом, когда требовалась определенная команда, она вызывалась прямо из буфера, а обращения к памяти не происходило.

В действительности при выборке с упреждением команда обрабатывается за два шага: сначала происходит вызов команды, а затем - ее выполнение. Еще больше продвинула эту стратегию идея конвейера. При использовании конвейера команда обрабатывается уже не за два, а за большее количество шагов, каждый из которых реализуется определенным аппаратным компонентом, причем все эти компоненты могут работать параллельно.

На рисунке 2.1 а) изображен конвейер из пяти блоков, которые называются ступенями. Первая ступень (блок С1) вызывает команду из памяти и помещает ее в буфер, где она хранится до тех пор, пока не потребуется. Вторая ступень (блок С2) декодирует эту команду, определяя ее тип и тип ее операндов. Третья ступень (блок СЗ) определяет местонахождение операндов и вызывает их из регистров или из памяти. Четвертая ступень (блок С4) выполняет команду, и, наконец, блок С5 записывает результат обратно в нужный регистр.

Чтобы лучше понять принципы работы конвейера, рассмотрим аналогичный пример. Представим себе кондитерскую фабрику, на которой выпечка тортов и их упаковка для отправки производятся раздельно. Предположим, что в отделе отправки находится длинный конвейер, вдоль которого располагаются 5 рабочих (или ступеней обработки). Каждые 10 секунд (это время цикла) первый рабочий ставит пустую коробку для торта на ленту конвейера. Эта коробка отправляется ко второму рабочему, который кладет в нее торт. После этого коробка с тортом доставляется третьему рабочему, который закрывает и запечатывает ее. Затем она поступает к четвертому рабочему, который ставит на ней штамп. Наконец, пятый рабочий снимает коробку с конвейерной ленты и помещает ее в большой контейнер для отправки в супермаркет. Примерно таким же образом действует компьютерный конвейер: каждая команда (в случае с кондитерской фабрикой - торт) перед окончательным выполнением проходит несколько ступеней обработки.

Возвратимся к нашему конвейеру на рисунке 2.1. Предположим, что время цикла у этой машины - 2 нс. Тогда для того, чтобы одна команда прошла через весь конвейер, требуется 10 нс. На первый взгляд может показаться, что такой компьютер будет выполнять 100 млн команд в секунду, в действительности же скорость его работы гораздо выше. В течение каждого цикла (2 нс) завершается выполнение одной новой команды, поэтому машина выполняет не 100, а 500 млн команд в секунду! [2]

 

2.2 Оценка производительности идеального конвейера

Пусть задана операция, выполнение которой разбито на n последо­вательных этапов. Пусть ti — время выполнения i-го этапа. При последо­вательном их выполнении операция выполняется за время

а быстродействие ЭВМ или одного процессора ВС, выполняющего только эту операцию, составит

Выберем время такта — величину tT = max{ti} и потребуем при раз­биении на этапы, чтобы для любого i = 1,..., n выполнялось условие ti + t(i+1) mod n= tT . То есть чтобы никакие два последовательных этапа (включая конец и новое начало операции) не могли быть выполнены за время одного такта.

Максимальное быстродействие процессора при полной загрузке конвейера составляет

Число n — количество уровней конвейера, или глубина перекрытия, так как каждый такт на конвейере параллельно выполняются n операций. Чем больше число уровней (станций), тем больший выигрыш в быстродействии может быть получен.

Известна оценка

то есть выигрыш в быстродействии получается от  до n раз.

Реальный выигрыш в быстродействии оказывается всегда меньше, чем указанный выше, поскольку:

1) некоторые операции, например, над целыми, могут выполняться за меньшее количество этапов, чем другие арифметические операции. Тогда отдельные станции конвейера будут простаивать.

2)  при выполнении некоторых операций на определённых этапах могут требоваться результаты более поздних, ещё не выполненных эта­пов предыдущих операций. Приходится приостанавливать конвейер.

3) поток команд порождает недостаточное количество операций для полной загрузки конвейера [3].

Рассмотрим принципы конвейерной обработки информации на примере пятиступенчатого конвейера, в котором выполнение команды складывается из следующих этапов:

IF (Instruction Fetch) - считывание команды в процессор;

ID (Instruction Decoding) - декодирование команды;

OR (Operand Reading) - считывание операндов;

EX (Executing) - выполнение команды;

WB (Write Back) - запись результата.

Выполнение команд в таком конвейере представлено в таблице 2.1.

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.