скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Властивості кальційактивованих та АТФ–індукованих калієвих струмів мембрани міоцитів taenia caeci морської свинки

Реферат: Властивості кальційактивованих та АТФ–індукованих калієвих струмів мембрани міоцитів taenia caeci морської свинки

НАЦІОНАЛЬНА АКАДЕМІЯ НАУК УКРАЇНИ

ІНСТИТУТ ФІЗІОЛОГІЇ ІМ. О.О. БОГОМОЛЬЦЯ

НЕСІН ВАСИЛЬ ВАСИЛЬОВИЧ

УДК 577.352:612.73

ВЛАСТИВОСТІ КАЛЬЦІЙАКТИВОВАНИХ ТА

АТФ ІНДУКОВАНИХ КАЛІЄВИХ СТРУМІВ МЕМБРАНИ МІОЦИТІВ ТAENIA CAECI МОРСЬКОЇ СВИНКИ

03.00.02 - біофізика

Автореферат дисертації

на здобуття наукового ступеня

кандидата біологічних наук

КИЇВ 2008


Дисертацією рукопис

Роботу виконано у відділі нервово-м’язової фізіології Інституту фізіології ім. О.О. Богомольця НАН України

Науковий керівник: академік НАН України, доктор медичних наук професор Шуба Михайло Федорович зав. відділом нервово-м’язової фізіології  Інституту фізіології ім. О.О.Богомольця НАН України

Офіційн опоненти: доктор медичних наук, професор Соловйов Анатолій Іванович головний науковий співробітник Інституту фармакології та токсикології АМН України;

доктор біологічних наук, професор Мірошниченко Микола Степанович зав. кафедри біофізики, біологічного факультету Київського національного університету ім. Тараса Шевченка

Захист відбудеться “5” лютого 2008 р. о 1400 годині на засіданні спеціалізовано вченої ради Д-26.198.01 при Інституті фізіології ім. О.О. Богомольця НАН України за адресою: 01024, м. Київ, вул. Богомольця, 4.

З дисертацією можна ознайомитись в бібліотеці Інституту фізіології ім. О.О. Богомольця НАН України за адресою: 01024, м. Київ, вул. Богомольця, 4.

Автореферат розісланий “5” січня 2008 р.

Вчений секретар Спеціалізовано вченої ради, доктор біологічних наук З.О. Сорокіна-Маріна


ЗАГАЛЬНА ХАРАКТЕРИСТИКА РОБОТИ

Актуальність теми. Основн функції кишечнику тісно пов’язані з його моторикою (сегментарне скорочення та перистальтичні хвилі), і забезпечується узгодженою роботою гладеньких м’язів поздовжнього та кільцевого шару стінки кишки. Моторна функція кишечнику надзвичайно важлива для процесів травлення та всмоктування поживних речовин. Вона забезпечує підвищення внутрішньокишкового тиску, що сприяє фільтрац розчинів з порожнини кишечнику до крові і лімфи та переміщення залишків хімуса за рахунок перистальтики по кишечнику. При багатьох патологічних процесах в травній системі відбувається порушення транзиту вмісту кишечнику. Ці порушення виступають головними причинами виникнення таких ускладнень, як післяопераційн парези, метеоризм, абдомінальний біль та запори. Тому гладенькі м’язи кишечнику одним із важливих об’єктів дослідження фундаментальної та прикладної науки.

Питання, що стосуються механізмів регуляції тонусу, скорочення та розслаблення гладеньких м’язів з боку вегетативної нервової системи, були і залишаються центральними для фізіології, біофізики та фармакології м’язів. Одним з медіаторів гальмування інтестинальних гладеньких м’язів є аденозин-5’-трифосфат (АТФ), який викликає гіперполяризацію мембрани гладеньком’язових клітин (ГМК), пригнічення спонтанної активності і, як наслідок, розслаблення м’язів (Burnstock et al. 1963). Вперше пуринергічне гальмування вдалося заблокувати апаміном (токсин з отрути бджоли) у відділі Шуби М.Ф. (Владимирова, Шуба 1978). Пізніше в лабораторії Барнстока було показано, що апамін блокує калієву провідність мембрани (Banks et al. 1978). Вважається, що пуринергічне гальмування опосередковане активацією метаботропних пуринорецепторів (P2Y) і центральною ланкою цього гальмування є підвищення рівня внутрішньоклітинного кальцію за рахунок вивільнення його з внутрішньоклітинного інозитолтрифосфатного (IP3) кальцієвого депо та наступною активацією кальційзалежних калієвих каналів мало провідності (SK) (Sanders et al. 1996).

Питання про типи кальційзалежних калієвих каналів (КСа) в мембрані цих клітин та можливої їх участі у пуринергічному гальмуванні залишається відкритим. Тому значний науковий інтерес викликає виділення компонентів кальційзалежного калієвого струму (ІК(Ca)) із сумарного трансмембранного іонного струму, дослідження їх фармако–біофізичних характеристик, а також визначення їх внеску у процеси пуринергічного гальмування гладеньких м’язів шлунково–кишкового тракту (ШКТ).

Зв'язок роботи з науковими програмами, планами, темами. Робота виконана в рамках наукових програм відділу нервово-м’язової фізіології Інституту фізіології ім. О.О. Богомольця НАН України: “Механізми метаболічної регуляції іонних каналів та скорочення гладеньком’язових клітин”(№ держ. реєстрації 0198U001935), Мембранні та внутрішньоклітинні механізми регуляції скорочення і активност онних каналів гладеньком’язових клітин нейромедіаторами”(№ держ. реєстрац 0101U002636) та “Мембранні та метаболічні механізми збуджувальної та гальмівно дії нейромедіаторів на гладенькі м’язи”(№ держ. реєстрації 0105U003235).

Мета та завдання дослідження. Метою даної роботи було виділення компонентів сумарного кальційзалежного калієвого струму і визначення їх внеску в пуринергічне гальмування кишечнику. Для досягнення цієї мети були поставлені наступн завдання:

1.   Розробити методику виділення функціонально повноцінних ізольованих гладеньком’язових клітин taenia caeci морської свинки із застосуванням антиоксидантних речовин.

2.   Дослідити властивості кальційзалежного калієвого струму мембрани гладеньком’язових клітин taenia caeci морсько свинки, розділивши його на компоненти за допомогою паксиліну, ТЕА та d-тубокурарину,

3.   Дослідити дію блокаторів кальційзалежних калієвих каналів (d-тубокурарину, паксиліну та ТЕА) на спонтанні вихідні струми.

4.   Визначити компоненти кальційзалежного калієвого струму мембрани міоцитів при активації пуринорецепторів.

Наукова новизна роботи. За допомогою методу фіксації потенціалу в конфігурації “whole-cell  patch-clamp” було проведено розділення на компоненти інтегральних калієвих струмів та вивчення їх біофізичних та фармакологічних характеристик. Вперше виявлено блокуючу дію відомого нейротоксина d-тубокурарину на трансмембранн онні струми та кальційзалежні калієві струми поодиноких свіжоізольованих ГМК кишечнику. Показано, що вихідні інтегральні трансмембранні іонні струми мають три складові: потенціалзалежний струм «затриманого випрямлення» та два компоненти ІК(Ca): ІК(Ca), що переноситься через SK канали та блокується d-тубокурарином і ІК(Ca), що переноситься через КСа канали великої провідності (BK) чутливі до дії паксиліну та ТЕА. Показано, що спонтанні вихідні струми (СВС) за своїми ознаками та чутливістю до блокаторів можна розділити на струми малої та великої амплітуди. СВС мало амплітуди чутливі до блокуючої дії d-тубокурарину і обумовлені активацією SК каналів, а СВС великої амплітуди блокуються паксиліном і ТЕА та формуються за рахунок активації BК каналів.

Дослідження клітинних механізмів пуринергічного гальмування показало, що основна роль належить активації кальційзалежних калієвих каналів малої провідності, внаслідок вивільнення Са2+ із інозитолтрифосфатчутливого кальцієвого депо саркоплазматичного ретикулуму.

Теоретичне та практичне значення роботи. Представлена робота має як фундаментальне так і практичне значення, оскільки значно поглиблює та розширює сучасні уявлення про клітинн механізми гальмування в гладеньких м’язах. В роботі проведено розділення вихідного трансмембранного іонного струму на потенціалзалежний та кальційзалежний компоненти, досліджено фармако−біофізичні характеристики кальційзалежних калієвих струмів. Виявлено клітинні механізми регуляц кальційзалежних калієвих каналів, при активації метаботропних пуринорецепторів. Результати досліджень можуть бути використані біофізиками, фізіологами та фармакологами для створення нових засобів корекції розладів ШКТ.

Особистий внесок. Вс електрофізіологічні дослідження вихідного інтегрального трансмембранного онного струму та його компонент, спонтанних вихідних струмів, описаних в роботі, а також отримання функціонально повноцінних поодиноких ГМК, обробка експериментального матеріалу були виконані особисто автором. Аналіз та узагальнення результатів досліджень були обговорені з науковим керівником та співавторами публікацій.

Апробація роботи. Основн положення роботи доповідались на семінарах відділу нервово−м’язово фізіології та поточних наукових семінарах Інституту фізіології ім. О.О. Богомольця НАН України (2002-2007), на міжнародній спеціалізованій школ нейронаук IBRO “Рецептори, канали, месенджери” (Ялта, 2004), Міжнародній науковій конференції “Клітинні і субклітинні механізми функціонування травно системи” (Львів, 2004), І Українській науковій конференції “Проблеми біологічної і медичної фізики ” (Харків, 2004), Міжнародній науковій конференції “Механізми функціонування фізіологічних систем”, (Львів, 2006), 4 з’їзді Українського біофізичного товариства (Донецьк, 2006).

Публікації. Матеріали дисертац опубліковані в п’яти наукових статтях і п’яти тезах доповідей в матеріалах наукових зібрань.

Структура та обсяг дисертації. Дисертація складається зі вступу, огляду літератури, опису методики досліджень, результатів досліджень, їх обговорення, висновків та списку використаних джерел із 175 найменувань. Робота викладена на 111 сторінках (без списку літератури), ілюстрована 39 рисунками та 2 таблицями.

МЕТОДИКА ДОСЛІДЖЕНЬ

Дослідження було проведено на свіжоізольованих поодиноких ГМК поздовжнього м’язового шару сліпо кишки (taenia cаесi) морської свинки. Для виділення клітин шматочки taenia cаесi поміщали до 2 мл номінально безкальцієвого розчину, що містив 3 мг колагенази (тип IА), 2 мг бичачого сироваткового альбуміну, 2 мг соєвого нгібітору трипсину та 2 мг таурину (поглинач вільних радикалів) на 25 - 35 хв. при 34 оС. Оброблені таким чином шматочки taenia cаесi відмивалися від ферменту і багаторазово пропускалися через пастерівську піпетку в номінально безкальцієвому розчині.

В основній частині експериментів для дослідження іонних струмів ізольованих ГМК застосовувалась “whole-cell” конфігурація методу “patch-clamp” (Hamill et al. 1981). Мікропіпетки виготовляли з м’якого молібденового скла, після заповнення розчином вони мали опір 2 - 4 МОм. Зовнішній розчин мав наступний склад (мМ): NaCl 120.4; КCl 5.9; CaCl2 2.5; MgCl2 1.2; d-глюкоза 11,5; HEPES 5; pH 7.4 (NaOH). Піпетковий розчин мав такий склад (мМ): КCl 135; MgSO4 1; Na2ATФ 2; ЕГТА 0.3; HEPES 10; pH 7.3 (КOH). Внутрішньоклітинна концентрація вільного Са2+ ([Ca2+]i) при використанні останнього розчину була близькою до фізіологічної і становила приблизно 100 нМ. При дослідженні Са2+ струму (ICa) іони К+ в розчинах еквімолярно замінювались на Cs+, також до зовнішнього розчину додавали 5 мМ тетраетиламонію (ТЕА). Експерименти проводились при кімнатній температурі (22-24 oC).

Реєстрація іонних струмів проводилась за допомогою підсилювача “L/M ЕРС-5”. Сигнал з виходу перетворювача струм - напруга надходив через фільтр низьких частот (частота зрізу 1 кГц) на аналого-цифровий перетворювач і далі в комп’ютер ІВМ РС/АТ. Дані аналізувались за допомогою програм “pCLAMP 5.5” та “Origin 5.0”.

Значення величин вказані як: середнє арифметичне ± стандартна похибка середнього арифметичного. В скобках вказано кількість клітин. Дані порівнювали за допомогою парного двохстороннього t-тест Стьюдента. Відмінності вважали статистично достовірними при значенні Р<0.05.

Результати дослiджень. Загальна характеристика Са2+залежних К+ струмів гладеньком’язових клітин taenia cаесі морської свинки. Для розділення та вивчення характеристик компонент ІК(Са), було використано неселективний блокатор К+ каналів – ТЕА, та відомий блокатор ВК каналів великої провідності – паксилін. В якості блокатора SK каналів було використано відомий нейромодулятор d-тубокурарин (d-ТК). Трансмембранні струми викликались за допомогою ступінчастих зміщень мембранного потенціалу від підтримуваного рівня – 60 мВ, що наближується до фізіологічного потенціалу спокою цих клітин. Типові значення вхідного опору клітин, що використовувались в наших експериментах, складали 1 - 2 ГОм. В досліджуваних клітинах при ступінчатих деполяризуючих зміщеннях мембранного потенціалу від підтримуваного потенціалу –60 мВ тривалістю 250 мс, виникав вихідний струм з порогом активації –30 мВ. Аплікація паксиліну за таких експериментальних умов викликала значне пригнічення вихідного струму, також знижувались його осциляції. На рис. 1 показана дія паксиліну (100 нМ) на трансмембранний іонний струм. На цьому ж рисунку подана динаміка дії паксиліну на амплітуду вихідного струму. Ефект паксиліну досягав максимуму протягом 2 – 3 хвилин від початку його аплікації. Постійна часу дії паксиліну складала 1,3 ± 0,3 хв (n=5). Відновлення амплітуди вихідного струму при відмиванні токсину відбувалось з постійною часу 0,9 ± 0,1 хв (n=5).

На рисунку 2 показано вольт-амперну характеристику (ВАХ) паксилінчутливого ІК(Са), що переноситься через ВК канали, отриманого шляхом відніманням значень струму при дії блокатора від контрольних значень.

На ВАХ паксилінчутливого ІК(Са) (рис. 2.А) спостерігається зміна крутизни перегин” в районі максимуму активації ІСа, що дає змогу казати про залежність, цього струму від концентрації іонів Са2+ в середин клітини. Крім того, канали, через які переноситься паксилінчутливий ІК(Са), проявляли потенціалзалежні властивості. Зі збільшенням рівня деполяризац спостерігалось збільшення його амплітуди, незважаючи на зменшення входу Са2+ в клітини при потенціалах +20…+40 мВ. На рисунку 2.Б показано крив нормалізованої провідності вихідного струму. Половина максимальної активації V0,5 в контролі складала 32.6±1.2 мВ, а коефіцієнт крутизни становив 12±0.7 мВ. При дії паксиліну ці значення становили 19.1± 0.9 мВ та 15± 0.6 мВ відповідно (n=7).

ТЕА − відомий неселективний блокатор калієвих каналів (Blatz et al. 1984, Benham et al. 1985). В концентрації 1 мМ ТЕА блокував вихідний струм, викликаний зміщенням мембранного потенціалу від підтримуваного рівня –60 мВ до +50 мВ, більш ніж на 50±6 % (n=6). Паксилін, при додаванні його в концентрації 100 нМ до розчину ТЕА (1 мМ), не викликав додаткового зменшення вихідного струму (рис. 3.А). В той же час, додаткова аплікація ТЕА (1мМ) (рис. 3.Б) в присутності паксиліну, призводить до подальшого пригнічення вихідного струму.

Раніше було показано (Повстян та ін. 2000), що IK(Ca), який переносяться через КСа великої провідності ефективно та однаково блокується наномолярними концентраціями харибдотоксину та ТЕА в концентрації 1 мМ. В той же час паксилін, високоспеціфічний блокатор КСа каналів великої провідност призводить до меншого блокування, ніж ТЕА, і, відповідно, харибдотоксин.

В якост блокатора SК каналів було застосовано d-ТК, що є відомим модулятором нікотинових холінорецепторів (Wenningmann et al. 2001) та широко застосовується як в дослідницьких цілях, так і в медицині. Але відомі інші дані про його додаткові властивості, як блокатора КСа каналів (Vacher et al. 1998, Ishii et al. 1997). В зв’язку з тим, що на ГМК кишечнику не встановлено наявність нікотинових холінорецепторів, це дало підстави використати та вивчити вплив d-ТК на іонні струми, що протікають через мембрану міоцитів. Аплікація d-ТК (500нМ–1мМ) пригнічувала вихідний трансмембранний струм, викликаний ступінчастим зміщенням мембранного потенціалу від підтримуваного рівня − 60 мВ, у концентраційно–залежний спосіб. З побудованої кривої доза-ефект, було встановлено, що концентрація половинного ефекту становить ІС50 = 38±5 мкМ (n=7).

На рисунку 4. подано динаміку дії d-ТК на амплітуду вихідного струму з часом. Часова розгортка дії d-ТК (50 мкМ) показала, що повний ефект блокування досягав максимуму через 2,5 - 3,5 хвилини після початку прикладання блокатора. Постійна часу дії d-ТК складала 1 ± 0,2 хв (n=5). Відновлення амплітуди вихідного струму при відмиванні токсину 1,2 ± 0,2 хв (n=5).

Усереднені (n=9) ВАХ дії d-ТК на трансмембранний іонний струм наведено на рис 5. Як видно з рисунка, вклад d-TK чутливого струму в загальний вихідний струм на максимумі та в кінці деполяризуючого імпульсу, тривалістю 500 мс, був приблизно однаковим. Виходячи з динаміки кривої ВАХ можна зробити висновок, що канали, через як переноситься d-TKчутливий струм, не проявляють потенціалзалежних властивостей. Поряд з цим на ВАХ досить добре простежується максимум в районі +40 мВ, що не співпадає з максимумом ICa, котрий знаходиться в діапазон потенціалів біля +10 мВ (рис 2). Подібні ефект було отримано на вісцеральних гладеньком’язових клітинах (Yamamoto et al. 1989, Zholos et al. 1992), що було, на думку авторів, пов’язано з кальційзалежними механізмами вивільнення кальцію з внутрішньоклітинного кальцієвого депо.

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.