скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыУчебное пособие: Методы решения краевых задач, в том числе "жестких" краевых задач

Учебное пособие: Методы решения краевых задач, в том числе "жестких" краевых задач

Методы решения краевых задач, в том числе «жестких» краевых задач

Методы Алексея Юрьевича Виноградова


1 Введение

На примере системы дифференциальных уравнений цилиндрической оболочки ракеты системы обыкновенных дифференциальных уравнений 8-го порядка (после разделения частных производных).

Система линейных обыкновенных дифференциальных уравнений имеет вид:

Y(x) = A(x) ∙ Y(x) + F(x),

где Y(x) – искомая вектор-функция задачи размерности 8х1, Y(x) – производная искомой вектор-функции размерности 8х1, A(x) – квадратная матрица коэффициентов дифференциального уравнения размерности 8х8, F(x) – вектор-функция внешнего воздействия на систему размерности 8х1.

Здесь и далее вектора обозначаем жирным шрифтом вместо черточек над буквами

Краевые условия имеют вид:

U∙Y(0) = u,

V∙Y(1) = v,

где

Y(0) значение искомой вектор-функции на левом крае х=0 размерности 8х1, U – прямоугольная горизонтальная матрица коэффициентов краевых условий левого края размерности 4х8, u – вектор внешних воздействий на левый край размерности 4х1,

Y(1) значение искомой вектор-функции на правом крае х=1 размерности 8х1, V – прямоугольная горизонтальная матрица коэффициентов краевых условий правого края размерности 4х8, v – вектор внешних воздействий на правый край размерности 4х1.

В случае, когда система дифференциальных уравнений имеет матрицу с постоянными коэффициентами A=const, решение задачи Коши имеет вид [Гантмахер]:

Y(x) = e∙ Y(x)  +  e e∙ F(t) dt,

где

e= E + A(x-x) + A (x-x)/2! + A (x-x)/3! + …,

где E это единичная матрица.

Матричная экспонента ещё может называться матрицей Коши или матрициантом и может обозначаться в виде:

K(x←x) = K(x - x) = e.

Тогда решение задачи Коши может быть записано в виде:

Y(x) = K(x←x) ∙ Y(x)  +  Y*(x←x)  ,

где Y*(x←x) = e e∙ F(t) dt   это вектор частного решения неоднородной системы дифференциальных уравнений.


2 Случай переменных коэффициентов

Этот вариант рассмотрения переменных коэффициентов проверялся в кандидатской диссертации.

Из теории матриц [Гантмахер] известно свойство перемножаемости матричных экспонент (матриц Коши):

e= e∙ e ∙ … ∙ e ∙ e,

K(x←x) = K(x←x) ∙ K(x←x) ∙ … ∙ K(x←x) ∙ K(x←x).

В случае, когда система дифференциальных уравнений имеет матрицу с переменными коэффициентами A=A(x), решение задачи Коши предлагается искать при помощи свойства перемножаемости матриц Коши. То есть интервал интегрирования разбивается на малые участки и на малых участках матрицы Коши приближенно вычисляются по формуле для постоянной матрицы в экспоненте. А затем матрицы Коши, вычисленные на малых участках, перемножаются:

K(x←x) = K(x←x) ∙ K(x←x) ∙ … ∙ K(x←x) ∙ K(x←x),

где матрицы Коши приближенно вычисляются по формуле:

K(x←x) = e,      где ∆x= x- x.

3 Формула для вычисления вектора частного решения неоднородной системы дифференциальных уравнений

Эта очень простая формула еще не обсчитана на компьютерах. Вместо неё обсчитывалась значительно ранее выведенная и гораздо более сложная формула, приведенная в:

Численный метод переноса краевых условий для жестких дифференциальных уравнений строительной механики  Журнал "ММ", Том: 14 (2002), Номер: 9, 3 стр. 1409-003r.pdf

Вместо формулы для вычисления вектора частного решения неоднородной системы дифференциальных уравнений в виде [Гантмахер]:

Y*(x←x) = e e∙ F(t) dt

предлагается использовать следующую формулу для каждого отдельного участка интервала интегрирования и тогда вектор частного решения на всем интервале будет складываться из векторов, вычисленных по формуле:

Y*(x←x) = Y*(x- x) = K(x- x) ∙K(x- t) ∙ F(t) dt .

Правильность приведенной формулы подтверждается следующим:

Y*(x- x) = ee∙ F(t) dt ,

Y*(x- x) = e∙e∙ F(t) dt ,

Y*(x- x) = e∙ F(t) dt ,


Y*(x- x) = e∙ F(t) dt ,

Y*(x- x) = ee∙ F(t) dt ,

Y*(x←x) = e e∙ F(t) dt,

что и требовалось подтвердить.

Вычисление вектора частного решения системы дифференциальных уравнений производиться при помощи представления матрицы Коши под знаком интеграла в виде ряда и интегрирования этого ряда поэлементно:

Y*(x←x) = Y*(x- x) = K(x- x) ∙K(x- t) ∙ F(t) dt =

= K(x- x) ∙ (E + A(x- t) + A (x- t)/2! + … ) ∙ F(t) dt =

= K(x- x) ∙ (EF(t) dt  + A∙(x- t) ∙ F(t) dt  + A/2! ∙(x- t) ∙ F(t) dt  + … ) .

Эта формула справедлива для случая системы дифференциальных уравнений с постоянной матрицей коэффициентов A=const.

Для случая переменных коэффициентов A=A(x) можно использовать прием разделения участка (x- x) интервала интегрирования на малые подучастки, где на подучастках коэффициенты можно считать постоянными A(x)=const и тогда вектор частного решения неоднородной системы дифференциальных уравнений Y*(x←x) будет на участке складываться из соответствующих векторов подучастков, на которых матрицы Коши приближенно вычисляются при помощи формул с постоянными матрицами в экспонентах.

4 Метод «переноса краевых условий» в произвольную точку интервала интегрирования

Метод обсчитан на компьютерах. По нему уже сделано 3 кандидатских физ-мат диссертации.

Метод подходит для любых краевых задач. А для «жестких» краевых задач показано, что метод считает быстрее, чем метод С.К.Годунова до 2-х порядков (в 100 раз), а для некоторых «жестких» краевых задач не требует ортонормирования вовсе. Смотри:

Численный метод переноса краевых условий для жестких дифференциальных уравнений строительной механики
Журнал "ММ", Том: 14 (2002), Номер: 9, 3 стр. 1409-003r.pdf

Полное решение системы дифференциальных уравнений имеет вид

Y(x) = K(x←x) ∙ Y(x)  +  Y*(x←x)  .

Или можно записать:

Y(0) = K(0←x) ∙ Y(x)  +  Y*(0←x)  .

Подставляем это выражение для Y(0) в краевые условия левого края и получаем:

U∙Y(0) = u,

U∙[ K(0←x) ∙ Y(x)  +  Y*(0←x) ] = u,

[ U∙ K(0←x) ] ∙ Y(x)  = u - U∙Y*(0←x)  .

Или получаем краевые условия, перенесенные в точку x:

U∙ Y(x)  = u  ,

где U= [ U∙ K(0←x) ] и u = u - U∙Y*(0←x) .

Далее запишем аналогично

Y(x) = K(x←x) ∙ Y(x)  +  Y*(x←x

И подставим это выражение для Y(x) в перенесенные краевые условия точки x 

U∙ Y(x)  = u,

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.