скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыУчебное пособие: Дискретная математика

Рис. 3. Упорядоченные наборы аргументов


3.6 Построение формул алгебры логики по заданной таблице истинности

Пусть F – двоичная функция от n переменных. Предположим, что F не равна тождественно нулю. Пусть T1, T2,…, Tk – все точки ее определения, в которых F=1. Можно доказать, что справедлива следующая формула:

,

где , j=1,2,…, k,

Построить функцию F можно и по-другому. Если функция F не равна тождественно единице и S1, S2,…, Sm – все точки области ее определения, в которых F=0, то справедлива формула:

,

где , j=1,2,…, m.

Из приведенных формул видно, что любую двоичную функцию можно записать, используя лишь операции ¬, , .

Основная конъюнкция – это конъюнкция основных высказываний переменных или их отрицаний. Например, .

Основная дизъюнкция – это дизъюнкция основных высказываний переменных или их отрицаний. Например, .

Конъюнктивной нормальной формой (КНФ) данной формулы называется формула, равносильная данной и представленная в виде конъюнкции основных дизъюнкций. Например, (A+B) (A+C+B) (D+A).

Дизъюнктивной нормальной формой (ДНФ) данной формулы называется формула, равносильная данной и представленная в виде дизъюнкции основных конъюнкций. Например, AB+C+AC.

Теорема 1. Для того чтобы формула алгебры высказываний была тождественно истинной, необходимо и достаточно, чтобы ее КНФ содержала в каждой элементарной дизъюнкции некоторое высказывание и его отрицание.

Теорема 2. Для того чтобы формула алгебры высказываний была тождественно ложной, необходимо и достаточно, чтобы ее ДНФ содержала в каждой элементарной конъюнкции некоторое высказывание и его отрицание.

Совершенные дизъюнктивные, конъюнктивные и полиномиальные нормальные формы представления переключательных (логических) функций. Многообразие формул, посредством которых может быть выражена любая логическая функция, определяет многообразие форм логических функций, т. е. способов их записи путем применения к переменным и их группам элементарных логических операций. Наиболее удобными для практического использования оказываются совершенные нормальные формы представления сложных логических функций. В алгебре логики доказывают, что любая логическая функция F (A, B, C,…, N) может быть представлена только одной совершенной дизъюнктивной нормальной формой (кроме константы нуль) или только одной совершенной конъюнктивной нормальной формой (кроме константы единица).

Пусть функция X=F (A, B, C) задана таблицей 4. Запись функции Х в виде логической суммы (дизъюнкции) логических произведений (конъюнкций) переменных, для которых значение функции Х равно 1, и является совершенной дизъюнктивной нормальной формой (СДНФ) представления логической функции.

Таблица 4

A B C X
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

СДНФ логической функции следует находить в такой последовательности:

1) составить произведения переменных для строк таблицы истинности, в которых Х равна 1. Если значение переменной (А, В или С) в строке равно 0, то в произведении записывается отрицание этой переменной;

2) написать сумму произведений, для которых функция Х равна 1. Полученная сумма и является СДНФ. В общем виде

,                      (1)

Это правило называют правилом записи переключательной функции по единицам. Согласно этому правилу, данные табл. 4 описываются аналитическим выражением, связывающим все наборы переменных, для которых Х=1, в виде:

.                        (2)


Запись функции Х в виде логического произведения (конъюнкции) логических сумм (дизъюнкций) переменных, для которых функция Х равна 0, является совершенной конъюнктивной нормальной формой (СКНФ) представления логической функции.

Для табл. 4 аналитическое выражение в СДНФ, связывающее все наборы переменных, для которых Х=0, имеет вид:

.                        (3)

Для представления логической функции Х в СКНФ произведем операцию отрицания левой и правой частей равенства (3)

и на основании законов двойного отрицания и инверсии

. (4)

СКНФ логической функции, согласно (4), следует находить в такой последовательности:

1) составить логические суммы переменных для строк таблицы истинности, в которых функция Х равна 0. Если значение переменной (А, В или С) в строке равно 1, то в сумме записывается отрицание этой переменной;

2) написать логическое произведение составленных логических сумм. Полученное произведение и является СКНФ. В общем виде:


,                      (5)

где Fi – сложные дизъюнкции.

Это правило также называют правилом построения переключательной функции по нулям.

Кроме представления функций в виде СДНФ и СКНФ используют и совершенную полиномиальную нормальную форму СПНФ. Вместо дизъюнкции может быть записана функция сложения по модулю два (сумма Жегалкина):

,                               (6)

где Fi – сложные конъюнкции.

Существует специальная таблица, в которой все элементарные логические операции от двух аргументов представлены в двух совершенных нормальных формах.

Нормальные формы представления переключательной функции иногда называют стандартными (табл. 5).

Таблица 5

f

A

0011

B

0101

Название функции Обозначение функции СДНФ СКНФ

f0

0000 Константа нуль 0 Не имеет

f1

0001 Логическое произведение, конъюнкция

f2

0010 Функция запрета по В

f3

0011 Переменная А

f4

0100 Функция запрета по А

f5

0101 Переменная В

f6

0110 Сумма по мо дулю 2, логическая неравнозначность

f7

0111 Логическое сложение, дизъюнкция

f8

1000 Операция (стрелка) Пирса, операция Вебба

f9

1001 Эквивалентность, логическая равнозначность

f10

1010 Инверсия В

f11

1011 Импликация от В к А

f12

1100 Инверсия А

f13

1101 Импликация от А к В

f14

1110 Операция (штрих) Шеффера

f15

1111 Константа единица 1

Не имеет

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.