скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Очистка газообразных выбросов от аэрозолей

Фильтр собирают из двух или трех секций в зависимости от требуемой производительности. Секция состоит из сварного корпуса, подвижной решетки. Решетка натянута между нижним и верхним валами. Нижний вал – ведущий. В верхней и нижней частях каркаса установлены катушки с фильтрующим материалом. Перемещение решеток и вращение катушек осуществляется с помощью электродвигателя мощностью 0,25 кВт через редуктор. По мере загрязнения материал перематывается с верхних катушек на нижние. В фильтре применяют фильтрующий материал типа ФСВУ. Он представляет собой слой из стеклянного волокна толщиной 30 – 50 мм, промасленный и пропитанный в процессе изготовления связующими веществами. Слой обладает рыхлостью и упругостью. Материал изготовляется в виде полотнищ длиной 15 м. Подвижная решетка обеспечивает необходимую жесткость и прочность фильтрующего слоя.

Перемотка катушек производится периодически при достижении определенного значения гидравлического сопротивления в результате накопления пыли. Скорость перемещения материала при перемотке около 0,5 м/мин.

2.4. Воздушные  фильтры  высокой  эффективности  с материалами  ФП

Материалы ФП и процесс их получения разработаны в Физико-химическом институте им. Л. Я. Карпова. Материалы ФП представляют собой исключительно равномерные слои ультратонких полимерных волокон.

Поскольку механическая прочность слоя волокон материала ФП невелика, он нанесен на тканевую подложку (марля, бязь, перкаль), которая и обеспечивает необходимую прочность.

В большинстве материалов ФП волокна сцеплены между собой за счет сил трения, и фильтрующий слой выдерживает значительную деформацию. Удлинение при разрыве – от 30 – 50%. Высокая пластичность обеспечивает надежную эксплуатацию фильтров, снаряженных материалами ФП.

Материалы ФП в зависимости от того, из какого полимера они изготовлены, стойки к различным химическим веществам, к высоким температурам – до 250 - 270°C.

Волокна ФП имеют вид ленты, ширина которой в 3 – 5 раз больше толщины. Материалы ФПП обычно обозначают по размеру волокон, а именно по ширине: например, ФПП-15, ФПП-25, ФПП-70 – обозначает фильтр Петрянова из перхлорвиниловых волокон шириной волокон соответственно 1,5; 2,5; 7,0 мкм.

Материалы ФП, изготовленные из полимеров с высокими изоляционными свойствами (перхлорвинил, полистирол), могут получать и удерживать электрические заряды. В результате повышается эффективность фильтра.

При длительном хранении, механическом воздействии, при высокой влажности, под воздействием ионизирующих излучений фильтровальные материалы теряют электрические заряды. Это же происходит и при накоплении в фильтре пыли в результате длительной эксплуатации.

Данные для выбора материалов ФП, применяемых в фильтрах систем вентиляции, приведены в табл. 3.

Таблица 3.

Выбор материалов ФП

Название фильтра Рекомендуемая марка материала ФП

Удельная нагрузка по воздуху, нм3/(ч*м2)

Эффективность очистки*, % (не менее)
Очистка приточного воздуха и нетоксичных вентиляционных выбросов. ФПП-70-0,2 до 150 90
Очистка рецеркуляционного и систем кондиционирования. ФПП-70-0,5 до 150 99
Очистка вентиляционных выбросов, содержащих токсичные или радиоактивные аэрозоли. ФПП-15-1,5 до 150 99-99,9
Стерилизация вентиляционного воздуха. ФПП-15-3 до 150 99,9-99,99
Очистка вентиляционного воздуха и других газов с целью улавливания и возврата ценных продуктов. ФПП-25-3 до 150 99,9-99,99
Очистка вентиляционных выбросов «горячих» камер, боксов, каньонов и т.п. ФПА-15-4 до 150 99,9-99,99
Очистка вентиляционного воздуха, содержащего аэрозоли особо опасных веществ ФПП-15-4,5 до 150 99,9-99,995
* - данные по аэрозолям относятся к высокодисперсным аэрозолям с размером частиц 0,1-0,2 мкм.

Широко распространен фильтр тонкой очистки – рамочный фильтр ЛАИК (лаборатория института Карпова). В одном м3 фильтра расположено до 100 м2 поверхности фильтрующего материала. П-образные рамки размещаются с чередованием открытых и закрытых сторон в двух противоположных направлениях. Техническая характеристика фильтра ЛАИК дана в табл. 4.

Таблица 4.

Характеристики фильтра ЛАИК

Марка фильтра Фильтрующая поверхность Фильтрующий материал

Производительность, нм3/ч

Сопротивление Па Габариты, мм

Допустимая температура,  0С

Назначение

При нагрузке 150 м3/ч*м2

Входное сечение Длина

ЛАИК

СП-3/15

15,1 2250 180 565*735 780 60 Для приточной и вытяжной вентиляции

ЛАИК

СП-6/15

15,1 2250 240 565*735 780

ЛАИК

СП-3/17

17,5 ФПП-15 2550 150 615*995 355

ЛАИК

СП-6/17

17,5 2550 210 615*995 355

ЛАИК

СП-3/21

21,0 3150 290 650*690 625 Для стерилизации воздуха и систем кондиционирования

ЛАИК

СП-6/21

21,0 3150 340 650*690 625

ЛАИК

СП-3/26

26,0 3950 400 660*665 750

ЛАИК

СП-6/26

26,0 3950 460 660*665 750
ЛАИК СЯ 16,0 2400 130 550*630 310 Для приточной вентиляции и систем кондиционирования

Для очистки значительных количеств воздуха из отдельных фильтров устраивается фильтровальная перегородка, в которой устанавливают несколько десятков или более фильтров.

2.5. Электрические воздушные фильтры

Фильтры, применяемые для очистки от пыли приточного воздуха, устроены несколько иначе, чем электрические пылеуловители, используемые для очистки выбросов в атмосферу.

Электрический воздушный фильтр – двухзонный. Вначале поток воздуха, подвергающегося очистке, проходит зону 1, которая представляет собой решетку из металлических пластин с натянутыми между ними коронирующими электродами из проволоки. К электродам подведен постоянный ток напряжением 13-15 кВ положительного знака от выпрямителя 2. Получив электрический заряд при прохождении ионизационной зоны, пылевые частицы в потоке воздуха направляются в осадительную зону 3. Она представляет собой пакет металлических пластин, расположенных параллельно друг другу на расстоянии 8 – 12 мм. К каждой второй пластине подведен ток напряжением 6,5 – 7,5 кВ положительного знака. Пыль осаждается на заземленных пластинах, к которым ток не подведен.

Вокруг коронирующего электрода происходит электрический разряд, сопровождающийся свечением («корона»). В результате электрических разрядов происходит выделение атомарного кислорода (одноатомные молекулы), образование озона O3, а также оксидов азота. При напряжении, применяемом в воздушных фильтрах, и при наличии в нем двух зон озон и оксиды азота выделяются в небольших количествах и опасности для людей не представляют. В электрических пылеуловителях, применяемых для очистки выбросов, используют ток напряжением 80-100 Вт, кроме того, в этих аппаратах к коронирующим электродам подведен ток отрицательного знака, что по имеющимся данным сопровождается более интенсивным выделением вредных веществ (в 8 раз).

Сила электрического тока и потребляемая мощность в электрических фильтрах невелики и находятся в пределах соответственно 0,8 мА и 10 Вт на 1000 м3/ч очищаемого воздуха.

Фракционная эффективность электрического фильтра дана в табл. 5.

Таблица 5.

Фракционная эффективность электрического фильтра

Размер частиц, мкм Число частиц в воздухе Эффективность улавливания,%
перед фильтром после фильтра
0,5 4000 405 89,9
0,6 2505 107 95,7
0,7 1000 46 95,4
0,8 500 27 94,6
0,9 180 12 93,5
1 140 7 95
1,5 45 3 93,3
2 28 1 96,6

Электрический фильтр ФЭ собирают из унифицированных ячеек. Основные технические показатели фильтра ФЭ приведены в табл. 6.

Таблица 6.

Основные технические показатели фильтров типа ФЭ

Показатели Ф1Э1 Ф3Э2 Ф5Э3 Ф8Э4 Ф10Э5 Ф14Э6 Ф18Э7

Номинальная пропускная способность, тыс. м3/ч

10 19 33 55 66 100 130

Площадь рабочего сечения (округлено), м2

1 3 5 8 10 14 13

Количество ячеек шириной, мм: 758

       965

7

-

14

-

-

18

24

12

-

36

-

54

-

72

Потребляемый ток, мА 7 14 24 42 54 81 110
Потребляемая мощность, Вт 100 200 350 600 600 1100 1500
Масса, кг 205 367 583 963 1120 1640 2125

Габаритные размеры, мм:

     А

     Н

820

1840

1580

1840

2090

2344

2625

3098

3125

3098

3125

4598

4125

4598

Страницы: 1, 2, 3, 4, 5, 6, 7


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.