скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Методы Data Mining

Курсовая работа: Методы Data Mining

Содержание

Что такое Data Mining

Классификация задач Data Mining

Задача классификации и регрессии

Задача поиска ассоциативных правил

Задача кластеризации

Возможности Data Miner в Statistica 8

Средства анализа STATISTICA Data Miner

Пример работы в Data Minin

Создание отчетов и итогов

Сортировка информации

Анализ цен жилищных участков

Анализ предикторов выживания

Заключение


Что такое Data Mining

Современный компьютерный термин Data Mining переводится как «извлечение информации» или «добыча данных». Нередко наряду с Data Mining встречаются термины Knowledge Discovery («обнаружение знаний») и Data Warehouse («хранилище данных»). Возникновение указанных терминов, которые являются неотъемлемой частью Data Mining, связано с новым витком в развитии средств и методов обработки и хранения данных. Итак, цель Data Mining состоит в выявлении скрытых правил и закономерностей в больших (очень больших) объемах данных.

Дело в том, что человеческий разум сам по себе не приспособлен для восприятия огромных массивов разнородной информации. В среднем человек, за исключением некоторых индивидуумов, не способен улавливать более двух-трех взаимосвязей даже в небольших выборках. Но и традиционная статистика, долгое время претендовавшая на роль основного инструмента анализа данных, так же нередко пасует при решении задач из реальной жизни. Она оперирует усредненными характеристиками выборки, которые часто являются фиктивными величинами (средней платежеспособностью клиента, когда в зависимости от функции риска или функции потерь вам необходимо уметь прогнозировать состоятельность и намерения клиента; средней интенсивностью сигнала, тогда как вам интересны характерные особенности и предпосылки пиков сигнала и т. д.).

Поэтому методы математической статистики оказываются полезными главным образом для проверки заранее сформулированных гипотез, тогда как определение гипотезы иногда бывает достаточно сложной и трудоемкой задачей. Современные технологии Data Mining перерабатывают информацию с целью автоматического поиска шаблонов (паттернов), характерных для каких-либо фрагментов неоднородных многомерных данных. В отличие от оперативной аналитической обработки данных (OLAP) в Data Mining бремя формулировки гипотез и выявления необычных (unexpected) шаблонов переложено с человека на компьютер. Data Mining — это не один, а совокупность большого числа различных методов обнаружения знаний. Выбор метода часто зависит от типа имеющихся данных и от того, какую информацию вы пытаетесь получить. Вот, например, некоторые методы: ассоциация (объединение), классификация, кластеризация, анализ временных рядов и прогнозирование, нейронные сети и т. д.

Рассмотрим свойства обнаруживаемых знаний, данные в определении, более подробно.

Знания должны быть новые, ранее неизвестные. Затраченные усилия на открытие знаний, которые уже известны пользователю, не окупаются. Поэтому ценность представляют именно новые, ранее неизвестные знания.

Знания должны быть нетривиальны. Результаты анализа должны отражать неочевидные, неожиданные закономерности в данных, составляющие так называемые скрытые знания. Результаты, которые могли бы быть получены более простыми способами (например, визуальным просмотром), не оправдывают привлечение мощных методов Data Mining.

Знания должны быть практически полезны. Найденные знания должны быть применимы, в том числе и на новых данных, с достаточно высокой степенью достоверности. Полезность заключается в том, чтобы эти знания могли принести определенную выгоду при их применении.

Знания должны быть доступны для понимания человеку. Найденные закономерности должны быть логически объяснимы, в противном случае существует вероятность, что они являются случайными. Кроме того, обнаруженные знания должны быть представлены в понятном для человека виде.

В Data Mining для представления полученных знаний служат модели. Виды моделей зависят от методов их создания. Наиболее распространенными являются: правила, деревья решений, кластеры и математические функции.

Сфера применения Data Mining ничем не ограничена - Data Mining нужен везде, где имеются какие-либо данные. Опыт многих таких предприятий показывает, что отдача от использования Data Mining может достигать 1000%. Например, известны сообщения об экономическом эффекте, в 10-70 раз превысившем первоначальные затраты от 350 до 750 тыс. дол. Приводятся сведения о проекте в 20 млн. дол., который окупился всего за 4 месяца. Другой пример - годовая экономия 700 тыс. дол. за счет внедрения Data Mining в сети универсамов в Великобритании. Data Mining представляют большую ценность для руководителей и аналитиков в их повседневной деятельности. Деловые люди осознали, что с помощью методов Data Mining они могут получить ощутимые преимущества в конкурентной борьбе.

Классификация задач DataMining

Методы DataMining позволяют решить многие задачи, с которыми сталкивается аналитик. Из них основными являются: классификация, регрессия, поиск ассоциативных правил и кластеризация. Ниже приведено краткое описание основных задач анализа данных.

1) Задача классификации сводится к определению класса объекта по его характеристикам. Необходимо заметить, что в этой задаче множество классов, к которым может быть отнесен объект, заранее известно.

2) Задача регрессии, подобно задаче классификации, позволяет определить по известным характеристикам объекта значение некоторого его параметра. В отличие от задачи классификации значением параметра является не конечное множество классов, а множество действительных чисел.

3) Задача ассоциации. При поиске ассоциативных правил целью является нахождение частых зависимостей (или ассоциаций) между объектами или событиями. Найденные зависимости представляются в виде правил и могут быть использованы как для лучшего понимания природы анализируемых данных, так и для предсказания появления событий.

4) Задача кластеризации заключается в поиске независимых групп (кластеров) и их характеристик во всем множестве анализируемых данных. Решение этой задачи помогает лучше понять данные. Кроме того, группировка однородных объектов позволяет сократить их число, а следовательно, и облегчить анализ.

5) Последовательные шаблоны – установление закономерностей между связанными во времени событиями, т.е. обнаружение зависимости, что если произойдет событие X, то спустя заданное время произойдет событие Y.

6) Анализ отклонений – выявление наиболее нехарактерных шаблонов.

Перечисленные задачи по назначению делятся на описательные и предсказательные.

Описательные (descriptive) задачи уделяют внимание улучшению понимания анализируемых данных. Ключевой момент в таких моделях — легкость и прозрачность результатов для восприятия человеком. Возможно, обнаруженные закономерности будут специфической чертой именно конкретных исследуемых данных и больше нигде не встретятся, но это все равно может быть полезно и потому должно быть известно. К такому виду задач относятся кластеризация и поиск ассоциативных правил.

Решение предсказательных (predictive) задач разбивается на два этапа. На первом этапе на основании набора данных с известными результатами строится модель. На втором этапе она используется для предсказания результатов на основании новых наборов данных. При этом, естественно, требуется, чтобы построенные модели работали максимально точно. К данному виду задач относят задачи классификации и регрессии. Сюда можно отнести и задачу поиска ассоциативных правил, если результаты ее решения могут быть использованы для предсказания появления некоторых событий.

По способам решения задачи разделяют на supervised learning (обучение с учителем) и unsupervised learning (обучение без учителя). Такое название произошло от термина Machine Learning (машинное обучение), часто используемого в англоязычной литературе и обозначающего все технологии Data Mining.

В случае supervised learning задача анализа данных решается в несколько этапов. Сначала с помощью какого-либо алгоритма Data Mining строится модель анализируемых данных – классификатор. Затем классификатор подвергается обучению. Другими словами, проверяется качество его работы и, если оно неудовлетворительно, происходит дополнительное обучение классификатора. Так продолжается до тех пор, пока не будет достигнут требуемый уровень качества или не станет ясно, что выбранный алгоритм не работает корректно с данными, либо же сами данные не имеют структуры, которую можно выявить. К этому типу задач относят задачи классификации и регрессии.

Unsupervised learning объединяет задачи, выявляющие описательные модели, например закономерности в покупках, совершаемых клиентами большого магазина. Очевидно, что если эти закономерности есть, то модель должна их представить и неуместно говорить об ее обучении. Отсюда и название - unsupervised learning. Достоинством таких задач является возможность их решения без каких-либо предварительных знаний об анализируемых данных. К ним относятся кластеризация и поиск ассоциативных правил.

Задача классификации и регрессии

При анализе часто требуется определить, к какому из известных классов относятся исследуемые объекты, т. е. классифицировать их. Например, когда человек обращается в банк за предоставлением ему кредита, банковский служащий должен принять решение: кредитоспособен ли потенциальный клиент или нет. Очевидно, что такое решение принимается на основании данных об исследуемом объекте (в данном случае - человеке): его месте работы, размере заработной платы, возрасте, составе семьи и т. п. В результате анализа этой информации банковский служащий должен отнести человека к одному из двух известных классов "кредитоспособен" и "некредитоспособен".

Другим примером задачи классификации является фильтрация электронной почты. В этом случае программа фильтрации должна классифицировать входящее сообщение как спам (нежелательная электронная почта) или как письмо. Данное решение принимается на основании частоты появления в сообщении определенных слов (например, имени получателя, безличного обращения, слов и словосочетаний: приобрести, "заработать", "выгодное предложение" и т. п.).

В общем случае количество классов в задачах классификации может быть более двух. Например, в задаче распознавания образа цифр таких классов может быть 10 (по количеству цифр в десятичной системе счисления). В такой задаче объектом классификации является матрица пикселов, представляющая образ распознаваемой цифры. При этом цвет каждого пиксела является характеристикой анализируемого объекта.

В Data Mining задачу классификации рассматривают как задачу определения 'значения одного из параметров анализируемого объекта на основании значений других параметров. Определяемый параметр часто называют зависимой переменной, а параметры, участвующие в его определении - независимыми переменными. В рассмотренных примерах независимыми переменными являлись:

·  зарплата, возраст, количество детей и т. д.;

·  частота определенных слов;

·  значения цвета пикселов матрицы.

Зависимыми переменными в этих же примерах являлись:

·  кредитоспособность клиента (возможные значения этой переменной "да" и "нет");

·  тип сообщения (возможные значения этой переменной "spam" и "mail");

·  цифра образа (возможные значения этой переменной 0, 1,..., 9).

Необходимо обратить внимание, что во всех рассмотренных примерах независимая переменная принимала значение из конечного множества значений: {да, нет}, {spam, mail}, {0, 1,..., 9}. Если значениями независимых и зависимой переменных являются действительные числа, то задача называется задачей регрессии. Примером задачи регрессии может служить задача определения суммы кредита, которая может быть выдана банком клиенту.

Задача классификации и регрессии решается в два этапа. На первом выделяется обучающая выборка. В нее входят объекты, для которых известны значения как независимых, так и зависимых переменных. В описанных ранее примерах такими обучающими выборками могут быть:

·  информация о клиентах, которым ранее выдавались кредиты на разные суммы, и информация об их погашении;

·  сообщения, классифицированные вручную как спам или как письмо;

·  распознанные ранее матрицы образов цифр.

На основании обучающей выборки строится модель определения значения зависимой переменной. Ее часто называют функцией классификации или регрессии. Для получения максимально точной функции к обучающей выборке предъявляются следующие основные требования:

·  количество объектов, входящих в выборку, должно быть достаточно большим. Чем больше объектов, тем построенная на ее основе функция классификации или регрессии будет точнее;

·  в выборку должны входить объекты, представляющие все возможные классы в случае задачи классификации или всю область значений в случае задачи регрессии;

·  для каждого класса в задаче классификации или каждого интервала области значений в задаче регрессии выборка должна содержать достаточное количество объектов.

На втором этапе построенную модель применяют к анализируемым объектам (к объектам с неопределенным значением зависимой переменной).

Задача классификации и регрессии имеет геометрическую интерпретацию. Рассмотрим ее на примере с двумя независимыми переменными, что позволит представить ее в двумерном пространстве (рис. 2.1.1). Каждому объекту ставится в соответствие точка на плоскости. Символы "+" и "-" обозначают принадлежность объекта к одному из двух классов. Очевидно, что данные имеют четко выраженную структуру: все точки класса "+" сосредоточены в центральной области. Построение классификационной функции сводится к построению поверхности, которая обводит центральную область. Она определяется как функция, имеющая значения "+" внутри обведенной области и "-" - вне.

Рис. Классификация в двумерном пространстве

Как видно из рисунка, есть несколько возможностей для построения обводящей области. Вид функции зависит от применяемого алгоритма.

Основные проблемы, с которыми сталкиваются при решении задач классификации и регрессии, - это неудовлетворительное качество исходных данных, в которых встречаются как ошибочные данные, так и пропущенные значения, различные типы атрибутов - числовые и категорические, разная значимость атрибутов, а также так называемые проблемы overfitting и underfilling. Суть первой из них заключается в том, что классификационная функция при построении "слишком хорошо" адаптируется к данным, и встречающиеся в них ошибки и аномальные значения пытается интерпретировать как часть внутренней структуры данных. Очевидно, что такая модель будет некорректно работать в дальнейшем с другими данными, где характер ошибок будет несколько иной. Термином underfitting обозначают ситуацию, когда слишком велико количество ошибок при проверке классификатора на обучающем множестве. Это означает, что особых закономерностей в данных не было обнаружено и либо их нет вообще, либо необходимо выбрать иной метод их обнаружения.

Задача поиска ассоциативных правил

Поиск ассоциативных правил является одним из самых популярных приложений Data Mining. Суть задачи заключается в определении часто встречающихся наборов объектов в большом множестве таких наборов. Данная задача является частным случаем задачи классификации. Первоначально она решалась при анализе тенденций в поведении покупателей в супермаркетах. Анализу подвергались данные о совершаемых ими покупках, которые покупатели складывают в тележку (корзину). Это послужило причиной второго часто встречающегося названия — анализ рыночных корзин (Basket Analysis). При анализе этих данных интерес прежде всего представляет информация о том, какие товары покупаются вместе, в какой последовательности, какие категории потребителей, какие товары предпочитают, в какие периоды времени и т. п. Такая информация позволяет более эффективно планировать закупку товаров, проведение рекламной кампании и т. д.

Например, из набора покупок, совершаемых в магазине, можно выделить следующие наборы товаров, которые покупаются вместе:

·  {чипсы, пиво};

·  {вода, орехи}.

Следовательно, можно сделать вывод, что если покупаются чипсы или орехи, то, как правило, покупаются пиво или вода соответственно. Обладая такими знаниями, можно разместить эти товары рядом, объединить их в один пакет со скидкой или предпринять другие действия, стимулирующие покупателя приобрести товар.

Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.