скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: VB, MS Access, VC++, Delphi, Builder C++ принципы(технология), алгоритмы программирования

Public best_solution() As Boolean

' Решение, которое мы проверяем.

Private test_solution() As Boolean

Private test_cost As Integer

Private test_profit As Integer

' Инициализация переменных и начало поиска.

Public Sub Search(search_type As Integer)

Dim i As Integer

    ' Задание размера массивов решения.

    ReDim best_solution(0 To MaxItem)

    ReDim test_solution(0 To MaxItem)

    ' Инициализация - пустой список инвестиций.

    NodesVisited = 0

    best_profit = 0

    best_cost = 0

    unassigned_profit = 0

    For i = 0 To MaxItem

        unassigned_profit = unassigned_profit + Items(i).Profit

    Next i

    test_profit = 0

    test_cost = 0

    ' Начнем поиск с первой позиции.

    BranchAndBound 0

End Sub

' Выполнить поиск методом ветвей и границ начиная с этой позиции.

Public Sub BranchAndBound(item_num As Integer)

Dim i As Integer

    NodesVisited = NodesVisited + 1

    ' Если это лист, то это лучшее решение, чем

    ' то, которое мы имели раньше, иначе он был бы

    ' отсечен во время поиска раньше.

    If item_num > MaxItem Then

        For i = 0 To MaxItem

           best_solution(i) = test_solution(i)

           best_profit = test_profit

           best_cost = test_cost

        Next i

        Exit Sub

    End If

    ' Иначе перейти по ветви вниз по ветвям потомка.

    ' Вначале попытаться добавить эту позицию. Убедиться,

    ' что она не превышает ограничение по цене.

    If test_cost + Items(item_num).Cost <= ToSpend Then

        ' Добавить позицию к тестовому решению.

        test_solution(item_num) = True

        test_cost = test_cost + Items(item_num).Cost

        test_profit = test_profit + Items(item_num).Profit

        unassigned_profit = unassigned_profit - Items(item_num).Profit

        ' Рекурсивная проверка возможного результата.

        BranchAndBound item_num + 1

        ' Удалить позицию из тестового решения.

        test_solution(item_num) = False

        test_cost = test_cost - Items(item_num).Cost

        test_profit = test_profit - Items(item_num).Profit

        unassigned_profit = unassigned_profit + Items(item_num).Profit

    End If

    ' Попытаться исключить позицию. Выяснить, принесут ли

    ' оставшиеся позиции достаточный доход, чтобы

    ' путь вниз по этой ветви превысил нижний предел.

    unassigned_profit = unassigned_profit - Items(item_num).Profit

    If test_profit + unassigned_profit > best_profit Then BranchAndBound item_num + 1

    unassigned_profit = unassigned_profit + Items(item_num).Profit

End Sub

Программа BandB использует метод полного перебора и метод ветвей и границ для решения задачи о формировании портфеля. Введите максимальную и минимальную стоимость и цену, которые вы хотите присвоить позициям, а также число позиций, которое требуется создать. Затем нажмите на кнопку Randomize (Рандомизировать), чтобы создать список позиций.

Затем при помощи переключателя внизу формы выберите либо Exhaustive Search (Полный перебор), либо Branch and Bound (Метод ветвей и границ). Когда вы нажмете на кнопку Go (Начать), то программа найдет наилучшее решение при помощи выбранного метода. Затем она выведет на экран это решение, а также число узлов в полном дереве решений и число узлов, которые программа в действительности проверила. На рис. 8.7 показано окно программы BindB после решения задачи портфеля для 20 позиций. Перед тем, как выполнить полный перебор для 20 позиций, попробуйте вначале запустить примеры меньшего размера. На компьютере с процессором Pentium с тактовой частотой 90 МГц поиск решения задачи портфеля для 20 позиций методом полного перебора занял более 30 секунд.

При поиске методом ветвей и границ число проверяемых узлов намного меньше, чем при полном переборе. Дерево решений для задачи портфеля с 20 позициями содержит 2.097.151 узел. При полном переборе придется проверить их все, при поиске методом ветвей и границ понадобится проверить только примерно 1.500 из них.

@Рис. 8.7. Программа BindB

======200

Число узлов, которые проверяет программа при использовании метода ветвей и границ, зависит от точных значений данных. Если цена позиций высока, то в правильное решение будет входить немного элементов. После помещения нескольких позиций в пробное решение, оставшиеся позиции слишком дорого стоят, чтобы поместиться в портфеле, потому большая часть дерева будет отсечена.

С другой стороны, если элементы имеют низкую стоимость, то в правильное решение войдет большое их число, поэтому программе придется исследовать множество комбинаций. В табл. 8.2 приведено число узлов, проверенное программой BindB в серии тестов при различной стоимости позиций. Программа создавала 20 случайных позиций, и полная стоимость решения была равна 100.

Эвристики

Иногда даже алгоритм ветвей и границ не может провести полный поиск в дереве. Дерево решений для задачи портфеля с 65 позициями содержит более 7 * 1019 узлов. Если алгоритм ветвей и границ проверяет только одну десятую процента этих узлов, и если компьютер проверяет миллион узлов в секунду, то для решения этой задачи потребовалось бы более 2 миллионов лет. В задачах, для которых алгоритм ветвей и границ выполняется слишком медленно, можно использовать эвристический подход.

Если качество решения не так важно, то приемлемым может быть результат, полученный при помощи эвристики. В некоторых случаях точность входных данных может быть недостаточной. Тогда хорошее эвристическое решение может быть таким же правильным, как и теоретически «наилучшее» решение.

В предыдущем примере метод ветвей и границ использовался для выбора инвестиционных возможностей. Тем не менее, вложения могут быть рискованными, и точные результаты часто заранее неизвестны. Может быть, что заранее будет неизвестен точный доход или даже стоимость некоторых инвестиций. В этом случае, эффективное эвристическое решение может быть таким же надежным, как и наилучшее решение, которое вы может вычислить точно.

@Таблица 8.2. Число узлов, проверенных при поиске методами полного перебора и ветвей и границ

=======201

В этом разделе обсуждаются эвристики, которые полезны при решении многих сложных задач. Программа Heur демонстрирует каждую из эвристик. Она также позволяет сравнить результаты, полученные при помощи эвристик и методов полного перебора и ветвей и границ. Введите значения минимальной и максимальной стоимости и дохода, а также число позиций и полную стоимость портфеля в соответствующих полях области Parameters (Параметры), чтобы задать параметры создаваемых данных. Затем выберите алгоритмы, которые вы хотите протестировать, и нажмите на кнопку Go. Программа выведет полную стоимость и доход для наилучшего решения, найденного при помощи каждого из алгоритмов. Она также сортирует решения по максимальному полученному доходу и выводит время выполнения для каждого из алгоритмов. Используйте метод ветвей и границ только для небольших задач, а метод полного перебора только для задач еще меньшего объема.

На рис. 8.8 показано окно программы Heur после решения задачи формирования портфеля для 20 позиций. Эвристики Fixed1, Fixed2 и No Changes 1, которые будут вскоре описаны, дали наилучшие эвристические решения. Заметьте, что эти решения немного хуже, чем точные решения, которые получены при использовании метода ветвей и границ.

Восхождение на холм

Эвристика восхождения на холм (hill‑climbing) вносит изменения в текущее решение, чтобы максимально приблизить его к цели. Этот процесс называется восхождением на холм, так как он похож на то, как заблудившийся путешественник пытается ночью добраться до вершины горы. Даже если уже слишком темно, чтобы еще можно было разглядеть что‑то вдали, путешественник может попытаться добраться до вершины горы, постоянно двигаясь вверх.

Конечно, существует вероятность, что путешественник застрянет на вершине меньшего холма и не доберется до пика. Эта проблема всегда может возникать при использовании этой эвристики. Алгоритм может найти решение, которое может оказаться локально приемлемым, но это не обязательно наилучшее возможное решение.

В задаче о формировании портфеля, цель заключается в том, чтобы подобрать набор позиций, полная стоимость которых не превышает заданного предела, а общая цена максимальна. На каждом шаге эвристика восхождения на холм будет выбирать позицию, которая приносит наибольшую прибыль. При этом решение будет все лучше соответствовать цели — получению максимальной прибыли.

@Рис. 8.8. Программа Heur

========202

Вначале программа добавляет к решению позицию с максимальной прибылью. Затем она добавляет следующую позицию с максимальной прибылью, если при этом полная цена еще остается в допустимых пределах. Она продолжает добавлять позиции с максимальной прибылью до тех пор, пока не останется позиций, удовлетворяющих условиям.

Для списка инвестиций из табл. 8.3, программа вначале выбирает позицию A, так как она дает максимальную прибыль — 9 миллионов долларов. Затем программа выбирает следующую позицию C, которая дает прибыль 8 миллионов. В этот момент потрачены уже 93 миллиона из 100, и программа не может приобрести больше позиций. Решение, полученное при помощи эвристики, включает позиции A и C, имеет стоимость 93 миллиона, и приносит 17 миллионов прибыли.

@Таблица 8.3. Возможные инвестиции

Эвристика восхождения на холм заполняет портфель очень быстро. Если позиции изначально были отсортированы в порядке убывания приносимой прибыли, то сложность этого алгоритма порядка O(N). Программа просто перемещается по списку, добавляя каждую позицию, если под нее есть место. Даже если список не упорядочен, то это алгоритм со сложностью порядка O(N2). Это намного лучше, чем O(2N) шагов, которые требуются для полного перебора всех узлов в дереве. Для 20 позиций эта эвристика требует всего около 400 шагов, метод ветвей и границ — несколько тысяч, а полный перебор — более чем 2 миллиона.

Public Sub HillClimbing()

Dim i As Integer

Dim j As Integer

Dim big_value As Integer

Dim big_j As Integer

    ' Многократный обход списка и поиск следующей

    ' позиции, приносящей наибольшую прибыль,

    ' стоимость которой не превышает верхней границы.

    For i = 1 To NumItems

        big_value = 0

        big_j = -1

        For j = 1 To NumItems

           ' Проверить, не находится ли он уже

           ' в решении.

           If (Not test_solution(j)) And _

               (test_cost + Items(j).Cost <= ToSpend) And _

               (big_value < Items(j).Profit)

           Then

               big_value = Items(j).Profit

               big_j = j

           End If

        Next j

        ' Остановиться, если не найдена позиция,

        ' удовлетворяющая условиям.

        If big_j < 0 Then Exit For

        test_cost = test_cost + Items(big_j).Cost

        test_solution(big_j) = True

        test_profit = test_profit + Items(big_j).Profit

    Next i

End Sub

Метод наименьшей стоимости

Стратегия, которая в каком‑то смысле противоположна стратегии восхождения на холм, называется стратегией наименьшей стоимости (least‑cost). Вместо того чтобы на каждом шаге пытаться максимально приблизить решение к цели, можно попытаться уменьшить стоимость решения, насколько это возможно. В примере с формированием портфеля, на каждом шаге к решению добавляется позиция с минимальной стоимостью.

Эта стратегия пытается поместить в решение максимально возможное число позиций. Это будет неплохим решением, если все позиции имеют примерно одинаковую стоимость. Если дорогая позиция приносит большую прибыль, то эта стратегия может упустить эту возможность, давая не лучший из возможных результатов.

Для инвестиций, показанных в табл. 8.3, алгоритм наименьшей стоимости начинает с добавления к решению позиции E со стоимостью 23 миллиона долларов. Затем он выбирает позицию D, стоящую 27 миллионов, и затем позицию C со стоимостью 30 миллионов. В этой точке алгоритм уже потратил 80 миллионов из 100 возможных, поэтому больше он не может выбрать ни одной позиции.

Это решение имеет стоимость 80 миллионов и дает 18 миллионов прибыли. Это на миллион лучше, чем решение для эвристики восхождения на холм, но стратегия наименьшей стоимости не всегда дает лучшее решение, чем восхождение на холм. Какая из эвристик дает лучшие результаты, зависит от значений входных данных.

Структура программы, реализующей эвристику наименьшей стоимости, почти идентична структуре программы для эвристики восхождения на холм. Единственное различие между ними заключается в выборе следующей позиции для добавления к решению. Эвристика наименьшей стоимости выбирает позицию с минимальной ценой; метод восхождения на холм выбирает позицию с максимальной прибылью. Так как эти два метода очень похожи, они выполняются за одинаковое время. Если позиции упорядочены соответствующим образом, то оба алгоритма выполняются за время порядка O(N). Если позиции расположены случайным образом, то оба выполняются за время порядка O(N2).

========203-204

Так как код на языке Visual Basic для этих двух эвристик очень похож, то мы приводим только строки, в которых происходит выбор очередной позиции.

If (Not test_solution(j)) And _

    (test_cost + Items(j).Cost <= ToSpend) And _

    (small_cost > Items(j).Cost)

Then

    small_cost = Items(j).Cost

    small_j = j

End If

Сбалансированная прибыль

Стратегия восхождения на холм не учитывает стоимость добавляемых позиций. Она выбирает позиции с максимальной прибылью, даже если их стоимость велика. Стратегия наименьшей стоимости не учитывает приносимую позицией прибыль. Она выбирает позиции с низкой стоимостью, даже если они приносят мало прибыли.

Эвристика сбалансированной прибыли (balanced profit) сравнивает при выборе стоимость позиций и приносимую ими прибыль. На каждом шаге эвристика выбирает позицию с наибольшим отношением прибыль‑стоимость.

В табл. 8.4 приведены те же данные, что и в табл. 8.3, но в ней добавлена еще одна колонка с отношением прибыль‑стоимость. При этом подходе вначале выбирается позиция C, так как она имеет максимальное соотношение прибыль‑стоимость — 0,27. Затем к решению добавляется позиция D с отношением 0,26, и позиция B с отношением 0,20. В этой точке, будет потрачено 92 миллиона из 100 возможных, и в решение нельзя будет добавить больше ни одной позиции.

Решение будет иметь стоимость 92 миллиона и давать 22 миллиона прибыли. Это на 4 миллиона лучше, чем решение с наименьшей стоимостью и на 5 миллионов лучше, чем решение методом восхождения на холм. В этом случае, это будет также наилучшим возможным решением, и его также можно найти полным перебором или методом ветвей и границ. Метод сбалансированной прибыли тем не менее, является эвристическим, поэтому он не обязательно находит наилучшее возможное решение. Он часто находит лучшее решение, чем методы наименьшей стоимости и восхождения на холм, но это не обязательно так.

@Таблица 8.4. Возможные инвестиции с соотношением прибыль‑стоимость

=========205

Структура программы, реализующей эвристику сбалансированной прибыли, почти идентична структуре программ для восхождения на холм и наименьшей стоимости. Единственное отличие заключается в методе выбора следующей позиции, которая добавляется к решению:

If (Not test_solution(j)) And _

    (test_cost + Items(j).Cost <= ToSpend) And _

    (good_ratio < Items(j).Profit / CDbl(Items(j).Cost)) _

Then

    good_ratio = Items(j).Profit / CDbl(Items(j).Cost)

    good_j = j

End If

Случайный поиск

Случайный поиск (random search) выполняется в соответствии со своим названием. На каждом шаге алгоритм добавляет случайную позицию, которая удовлетворяет верхнему ограничению на суммарную стоимость позиций в портфеле. Этот метод поиска также называется методом Монте‑Карло (Monte Carlo search или Monte Carlo simulation).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.