скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Дзета-функция Римана

Курсовая работа: Дзета-функция Римана

Курсовая работа

Выполнил студент 2го курса ФМФ группы «Б» Симонян Сергей Олегович

Ставропольский Государственный университет

Кафедра математического анализа

Ставрополь, 2004 г.

Введение.

Функция – одно из основных понятий во всех естественнонаучных дисциплинах. Не случайно ещё в средней школе дети получают интуитивное представление об этом понятии. Со школьной скамьи наш багаж знаний пополняется сведениями о таких функциях как линейная, квадратичная, степенная, показательная, тригонометрические и других. В курсе высшей математики круг известных функций значительно расширяется. Сюда добавляются интегральные и гиперболические функции, эйлеровы интегралы (гамма- и бета-функции), тета-функции, функции Якоби и многие другие.

Что же такое функция? Строгого определения для неё не существует. Это понятие является в математике первичным, аксиоматизируется. Однако, под функцией понимают закон, правило, по которому каждому элементу какого-то множества X ставится в соответствие один или несколько элементов множества Y. Элементы множества X называются аргументами, а множества Y – значениями функции. Если каждому аргументу соответствует одно значение, функция называется однозначной, если более одного – то многозначной. Синонимом функции является термин «отображение». В простейшем случае множество X  может быть подмножеством поля действительных R или комплексных C чисел. Тогда функция называется числовой. Нам будут встречаться только такие отображения.

Функции могут быть заданы многими различными способами: словесным, графическим, с помощью формулы. Функция, которую мы будем рассматривать в этой работе, задаётся через бесконечный ряд. Но, несмотря на такое нестандартное определение, по своему представлению в виде ряда она может быть хорошо изучена методами теории рядов и плодотворно применена к различным теоретическим и прикладным вопросам математики и смежных с ней наук.

Конечно же, речь идёт о знаменитой дзета-функции Римана, имеющей широчайшие применения в теории чисел. Впервые ввёл её в науку великий швейцарский математик и механик Леонард Эйлер и получил многие её свойства. Далее активно занимался изучением дзета-функции немецкий математик Бернгард Риман. В честь него она получила своё название, так как он опубликовал несколько исключительно выдающихся работ, посвящённых этой функции. В них он распространил дзета-функцию на область комплексных чисел, нашёл её аналитическое продолжение, исследовал количество простых чисел, меньших заданного числа, дал точную формулу для нахождения этого числа с участием функции  и высказал свою гипотезу о нулях дзета-функции, над доказательством или опровержением которой безрезультатно бьются лучшие умы человечества уже почти 150 лет.

 Научная общественность считала и считает решение этой проблемы одной из приоритетных задач. Так Давид Гильберт, выступавший на Международной Парижской математической конференции 1900 году с подведением итогов развития науки и рассмотрением планов на будущее, включил гипотезу Римана в список 23 проблем, подлежащих решению в новом столетии и способных продвинуть науку далеко вперёд. А на рубеже веков, в 2000 году американский The Clay Mathematics Institute назвал семь задач, за решение каждой из которых будет выплачен 1 миллион долларов. В их число также попала гипотеза Римана.

Таким образом, даже бы поверхностное знакомство с дзета-функцией будет и интересным, и полезным.

Глава 1.

Итак, приступим к изучению этой важной и интересной дзета-функции Римана. В данной главе мы получим некоторые свойства функции в вещественной области, исходя из её определения с помощью ряда.

Определение. Дзета-функцией Римана ζ(s) называют функцию, которая любому действительному числу s ставит в соответствие сумму ряда

                                                                                                      (1)

если она существует.

Основной характеристикой любой функции является область определения. Найдём её для нашей функции.

Пусть сначала s≤0, тогда s=−t, где t принадлежит множеству неотрицательных действительных чисел R+{0}. В этом случае  и ряд (1) обращается в ряд , который, очевидно, расходится как при t>0, так и при t=0. То есть значения s≤0 не входят в область определения функции.

Теперь пусть s>0. Для исследования сходимости ряда (1) воспользуемся интегральным признаком Коши. При каждом s рассмотрим функцию , где , которая является на промежутке непрерывной, положительной и монотонно убывающей. Возникает три различных возможности:

0<s<1. Тогда , поэтому ряд (1) расходится и промежуток (0;1) не входит в область определения дзета-функции;

s=1. Получаем , то есть при s=1 дзета-функция Римана также не определена;

s>1.   В   этом    случае     

. Ряд (1) сходится.

Обобщив результаты, находим, что область определения дзета-функции есть промежуток . На этом промежутке функция оказывается непрерывной и дифференцируемой бесконечное число раз.

Докажем непрерывность функции ζ(s) на области определения. Возьмём произвольное число s0>1. Перепишем ряд (1) в виде . Как было выше показано, ряд  сходится, а функции  при s>s0 монотонно убывают и все вместе ограничены единицей. Значит, по признаку Абеля для s>s0 ряд (1) сходится равномерно. Используя теорему о непрерывности суммы функционального ряда, получаем, что в любой точке s>s0 дзета-функция непрерывна. Ввиду произвольности s0 ζ(s) непрерывна на всей области определения.

Теперь почленным дифференцированием ряда (1), пока формально, найдём производную дзета-функции Римана:

                                                                                                 (2).

Чтобы оправдать этот результат, достаточно удостовериться в том, что ряд (2) равномерно сходится на промежутке  и воспользоваться теоремой о дифференцировании рядов. Используем тот же приём. Зафиксируем любое s0>1 и представим ряд (2) в виде  для s>s0. Множители , начиная с n=2, монотонно убывают, оставаясь ограниченными числом ln 2. Поэтому по признаку Абеля ряд (2) сходится равномерно при s>s0, а значит и при любом s>1. Какое бы значение s>1 ни взять его можно заключить между  и , где , а ; к промежутку  применима вышеуказанная теорема.

Таким же путём можно убедиться в существовании для дзета-функции производных всех порядков и получить их выражения в виде рядов:

.

Попытаемся построить наглядное изображение функции в виде графика. Для этого изучим сначала её поведение на бесконечности и в окрестности точки s=1.

В первом случае, ввиду равномерной сходимости ряда (1), по теореме о почленном переходе к пределу, имеем . При n=1 предел равен единице, остальные пределы равны нулю. Поэтому .

Чтобы исследовать случай , докажем некоторые вспомогательные оценки.

 Во-первых, известно, что если для ряда  существует непрерывная, положительная, монотонно убывающая функция , определённая на множестве , такая, что , и имеет первообразную , то остаток ряда  оценивается   так: , где .  Применяя  вышесказанное   к   ряду   (1),   найдём,  что   необходимая  функция

, а  и . Отсюда, подставляя в двойное неравенство, имеем

                                                            (3). В левом неравенстве положим n=0, тогда , то есть . В правом же возьмём n=1 и получим , далее ,  и, наконец, . Переходя в неравенствах  к пределу при , находим .

Отсюда, в частности, следует, что . Действительно, положим . Тогда , то есть  . Поэтому . Из того, что , а , вытекает доказываемое утверждение.  

Можно, однако, получить ещё более точный результат для оценки поведения дзета-функции в окрестности единицы, чем приведённые выше, принадлежащий Дирихле. Будем отталкиваться от очевидного при произвольном n равенства . Прибавим ко всем частям неравенств (3) сумму  и вычтем . Имеем . Пусть здесь s стремится к единице. По правилу Лопиталя легко вычислить  и . Мы пока не знаем, существует ли предел выражения  при , поэтому, воспользовавшись наибольшим и наименьшим пределами, напишем неравенства так:

. Ввиду произвольности n возьмём . Первое и последнее выражения стремятся к эйлеровой постоянной C (C0,577). Значит , а, следовательно, существует и обычный предел и .

 Найденные выше пределы позволяют получить лишь приблизительное представление о виде графика дзета-функции. Сейчас мы выведем формулу, которая даст возможность нанести на координатную плоскость конкретные точки, а именно, определим значения , где k – натуральное число.

Возьмём известное разложение , где  - знаменитые числа Бернулли (по сути, через него эти числа и определяются). Перенесём слагаемое  в левую часть равенства. Слева получаем  cth, а в правой части - , то есть cth. Заменяем  на , получаем cth.

С другой стороны, существует равенство cth, из которого cth. Подстановкой  вместо  находим cth . Если , то для любого N   и по теореме о сложении бесконечного множества степенных рядов cth .     

Приравняем полученные разложения:  

 , следовательно . Отсюда немедленно следует искомая формула

                                                                                        (4), где  - k-е число Бернулли. Она удобна тем, что эти числа хорошо изучены и для них составлены обширные таблицы.    

Теперь, исходя из полученных результатов, можно построить эскиз графика дзета-функции Римана, достаточно хорошо отражающий её поведение на всей области определения.

Леонард Эйлер, впервые рассмотревший дзета-функцию, получил замечательное разложение её в бесконечное произведение, которое иногда тоже принимают за определение:

, где pi – i-е простое число                                             (4).

Страницы: 1, 2, 3


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.