скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Экстремумы функций

Замечание 1 : если f’’(x)=0 ,то это правило теряет силу и нужно воспользоваться первым признаком нахождения экстремумов. При этом экстремум может существовать , а может и не существовать.(Например, как для функции y=x3,так и для функции y=x4,вторая производная обращается в нуль в точке х=0, но первая из них не имеет экстремумов в точке х=0, а вторая имеет в ней минимум (рис.4)).

Однако в случае своей применимости второй признак окаывается весьма удобным : вместо рассмотрения знака функции f’(x) в точках, отличных от предполагаемой точки экстремума, он позволяет дать ответ по знаку функции f’’(x) в той же точке.

3.3.Использование высших производных.

В случае, когда f’’(x)=0 (f’(x)=0) экстремум может быть, а может и не быть. Рассмотрим общий случай.

Теорема 3.2:Пусть функция f:U(x0) R, определенная в окрестности U(x0) точки х0, имеем в х0 производные до порядка n включительно  (n>1).

Если f’(x0)=…=f (n-1)(x0)=0 и f(n)(x0)=0 , то при n нечетном в х0 экстремума нет, а при n четном экстремум есть, причем это строгий локальный минимум, если f(n)(x0)>0 , и строгий локальный максимум, если f (n)(x0).

Доказательство:Используя локальную фурмулу Тейлора

f(x)-f(x0)=f(n)(x0)(x-x0)n+   (x)(x-x0)n       (3.2)

где  (x) 0 при x  x0,будем рассуждать так же, как при доказательстве леммы Ферма. Перепишем (2) в виде

f(x)-f(x0)=(f(n)(x0)+   (x))(x-x0)n         (3.3)

Поскольку f(n)(x0)=0,а  (x)  0 при  x  x0, сумма имеет знак fn(x0),когда х достаточно близок к х0. Если n нечетно, то при переходе через х0 скобка (х-х0)n меняет знак и тогда изменяется знак всей правой , а следовательно, и левой части равенства (3.3). Значит, при n=2k+1 экстремума нет.

Если n четно, то (x-x0)n>0 при x=x0 и,следовательно, а малой окрестности точки х0 знак разности f(x)-f(x0), как видно из равенства (3.3), совпадает со знаком f(n)(x0) :

-     пусть f(n)(x0),тогда в окрестности точки х0 f(x)>f(x0), т. е. в точке х0 – локальный минимум;

-     пусть f(n)(x0)>0,тогда f(x)>f(x0) ,т. е. в точке х0 локальный минимум.                                                                  ч.т.д.    

      

       4.Экстремумы функций трех переменных.

4.1.Необходимые условия экстремума.

Пусть функция v=f(x,y,z) определена в области D и (x0,y0,z0) будет внутренней точкой этой области.

 Говорят, что функция v=f(x,y,z) в точке (x0,y0,z0)  имеет максимум (минимум), если её можно окружить такой окрестностью

(x0-   ,x0+  , y0-  ,y0+  ,z0-  ,z0+   )

что бы для всех точек этой окрестности выполнялось неравенство

f(x,y,z)<f(x0,y0,z0)

                                               (>)

Если эту окрестность взять настлько малой, что бы знак равенства был исключён, т. е. чтобы в каждой её точке, кроме  самой   точки (x0,y0,z0) выполнялось строгое неравенство

                                     f(x,y,z)<f(x0,y0,z0)

                                               (>)

то говорят, что в точке (x0,y0,z0)  имеет место собственный максимум (минимум), в противном случае максимум (минимум) называют несобственным.

Для обозначения максимума и минимума (как и в случае одной переменной) употребляется общий термин – экстремум.

Предположим, что наша функция в некоторой точке (x0,y0,z0)  имеет экстремум,

Покажем, что если в этой точке существуют (конечные) частные производные

fx’(x0,y0,z0), fy’(x0,y0,z0) ,fz’(x0,y0,z0)

то все эти частные производные равны нулю, так что обращение в нуль частных производныхпервого порядка является необходимым условием существования экстремума.

С этой целью положим y= y0,z= z0 сохраняя х переменным ; тогда у нас получится функция от одной переменной х :

v=f(x, y0,z0)

Так как мы предположили, что в точке (x0,y0,z0)  существует экстремум (для определенности - пуcть это будет максимум), то, в частности, отсюда следует, что в некоторой окрестности (x0-   ,x0+  ) точки x=x0, необходимо должно выполняться неравенство

f(x, y0,z0)<f(x0,y0,z0)

так что упомянутая выше функция одной переменной в точке будет иметь максимум, а отсюда по теореме Ферма следует, что

fx’(x0,y0,z0)=0

Таким образом можно показать, что в точке и остальные частные производные равны нулю.

Итак, «подозрительными» на экстремум являются те точки, в которых частные производные первого порядка все обращаются в нуль: их координаты можно найти, решив систему уравнений

fx’(x,y,z)=0

                                          fy’(x,y,z)=0                  (4.2)

fz’(x,y,z)=0

Как и в случае функции одной переменной, подобные точки называются стационарными.

4.2.Достаточное условие экстремума.

Как и в случае  функции одной переменной, в стационарной точке вовсе не обеспечено наличие экстремума.Таким образом, встает вопрос об достаточных для существования (или отсутствия) экстремума в стационарной точке, то есть о том исследоовании, которому эта точка должна быть дополнительно подвергнута.

Предположим, что функция v=f(x,y,z) определена, непрерывна и имеет непрерывные частные производные первого и второго порядков в окрестности некоторой точки (x0,y0,z0), которая является стационарной, т.е. удовлетворяет условиям

 fx’(x0,y0,z0)=0,fy’(x0,y0,z0)=0 ,fz’(x0,y0,z0)=0

Чтобы установить, действительно ли наша функция имеет в точке (x0,y0,z0) экстремум или нет, естественно обратимся к рассмотрению разности

= f(x,y,z)- f(x0,y0,z0)

Разложим ее по формуле Тейлора,

=   { fx ’’ x12+fx ’’ x22+…+fx ’’ xn2+2fx1x2 ’’ x1 x2+ +2fx1x3 ’’ x1  x3+…+2fxn-1xn ’’ xn-1  xn}=     fxixj ’’ xi   xj

где   x= xi-xi0 ; производные все вычеслены в некоторой точке

(x10+0 x1, x20+0 x2,…, xn0+0 xn)    (0<0<1)

Введём и здесь значения

fxixj ’’ (x10,x20,…,xn0)=aik     (i,k=1,2,…,n)           (4.2)

так что

fxixj ’’ (x10+0 x1, x20+0 x2,…, xn0+0 xn)= aik+   ik

и

           ik    0    при   x1   0,…, xn   0                        (4.3)

Теперь интеесующее нас выражение можно написать в виде:

=   {     aik  xi   xk+         ik  xi   xk}                           (4.4)

На первом месте в скобках здесь стоит второй дифференциал функции f в рассматриваемой точке : он представляет собой однородный одночлен второй степени или, как говорят, квадратичную форму от переменных   x1,…,  xn. От свойств этой квадратичной формы, как мы увидим, и зависит решение интересующего нас вопроса.

В высшей алгебре квадратичную форму

                                 aik  yi  yk         (aik = aki)           (4.5)

от переменных y1,…,yn называют определенной положительно (отрицательно), если она имеет положительные (отрицательные) значения при всех значениях аргументов, не равных одновременно нулю.

Необходимое и достаточное условие для того, чтобы форма (4.5) была определенной и положительной принадлежит Сильвестеру (J.J.Sylvester). Оно выражается цепью неравенств:

                 a11 a12                  a11 a12 a13                         

a11>0,       a21 a22       ,    a21 a22 a23    >0,     

                                       a31 a32 a33                       

Так как определенная отрицательная форма с изменением знака всех её членов переходит в определенню положительную, и обратно, то отсюда легко найти и характеристику отицательной формы : она дается цепью неравенств, которая получается из написанной выше изменением смысла неравенств через одно (начиная с первого).

      a11 a12             a11 a12 a13                         

a11>0,   a21 a22          a21 a22 a23    >0

                         a31 a32 a33                          

                           

 Следовательно, чтобы исследовать точку М(x0,y0,z0) на экстремум , надо исследовать квадратичную форму ( 4.5).

Сформулируем полученный результат в виде теоремы.

Теорема : Пусть в некоторой области, содержащей точку М(x0,y0,z0), функция f(x,y,z) имеет непрерывные частные производные до второго порядка включительно; пусть  кроме того, точка М(x0,y0,z0) является критической точкой функции f(x,y,z), т.е.                                          

    f(x0,y0,z0)           f(x0,y0,z0)           f(x0,y0,z0)

--------------- =0, ---------------=0, ---------------=0

          x                          y                      z

Тогда при x=x0,y=y0,z=z0 :

1)  f(x,y,z) имеет максимум , если

    2 f(x0,y0,z0)          2 f(x0,y0,z0)    2 f(x0,y0,z0)      2 f(x0,y0,z0) 2

---------------<0 , -------------------------------- -  --------------- >0  

         x2                         x2        y2                                               x       y

2 f(x0,y0,z0)       2 f(x0,y0,z0)    2 f(x0,y0,z0)      2 f(x0,y0,z0) 2

---------------   -------------------------------- -  ---------------   --     

         x2                    x2        z2                                               y   z

 

                              2 f(x0,y0,z0)        2 f(x0,y0,z0)    2 f(x0,y0,z0)

   --  ---------------      -------------------------------- --

                  x  y                  x    y                      z2

               2 f(x0,y0,z0)     2 f(x0,y0,z0)

--  ---------------------------------    +

                       x   z               y    z   

                                 2 f(x0,y0,z0)        2 f(x0,y0,z0)    2 f(x0,y0,z0)

   +   ---------------      -------------------------------- --

                x    z                    x        y         y   z

               2 f(x0,y0,z0)     2 f(x0,y0,z0)

--      ------------------------------- >0

                              x   z               y2

      

2)  f(x,y,z) имеет минимум, если

2 f(x0,y0,z0)          2 f(x0,y0,z0)    2 f(x0,y0,z0)      2 f(x0,y0,z0) 2

--------------->0 , -------------------------------- -  --------------- >0  

         x2                         x2        y2                                               x       y

2 f(x0,y0,z0)       2 f(x0,y0,z0)    2 f(x0,y0,z0)      2 f(x0,y0,z0) 2

---------------   -------------------------------- -  ---------------   --     

         x2                    x2        z2                                               y   z

 

                              2 f(x0,y0,z0)        2 f(x0,y0,z0)    2 f(x0,y0,z0)

   --  ---------------      -------------------------------- --

                  x  y                  x    y                      z2

               2 f(x0,y0,z0)     2 f(x0,y0,z0)

--  ---------------------------------    +

                       x   z               y    z   

                                 2 f(x0,y0,z0)        2 f(x0,y0,z0)    2 f(x0,y0,z0)

   +   ---------------      -------------------------------- --

                x    z                    x        y         y   z

               2 f(x0,y0,z0)     2 f(x0,y0,z0)

--      ------------------------------- >0

                              x   z               y2

      

3)если

2 f(x0,y0,z0)       2 f(x0,y0,z0)    2 f(x0,y0,z0)      2 f(x0,y0,z0) 2

---------------   -------------------------------- -  ---------------   --     

         x2                    x2        z2                                               y   z

 

                              2 f(x0,y0,z0)        2 f(x0,y0,z0)    2 f(x0,y0,z0)

   --  ---------------      -------------------------------- --

                  x  y                  x    y                      z2

               2 f(x0,y0,z0)     2 f(x0,y0,z0)

--  ---------------------------------    +

                       x   z               y    z   

                                 2 f(x0,y0,z0)        2 f(x0,y0,z0)    2 f(x0,y0,z0)

   +   ---------------      -------------------------------- --

                x    z                    x        y         y   z

               2 f(x0,y0,z0)     2 f(x0,y0,z0)

--      ------------------------------- =0

                              x   z               y2

       то экстремум может быть , а может и не быть (в этом случае требуется дальнейшее исследование )

4) во всех остальных случаях f(x,y,z) не имеет ни максимума , ни минимума. 

5.Экстремумы функций многих переменных.

5.1.Необходимые условия экстремума.

Пусть функция u=f(x1,x2,…,xn) определена в области D и (x10,x20,…,xn0) будет внутренней точкой этой области.

Говорят, что функция u=f(x1,x2,…,xn)  в точке (x10,x20,…,xn0) имеет максимум (минимум), если её можно окружить такой окрестностью

(x10         x10       x20        x20              xn0       xn0        )

что бы для всех точек этой окрестности выполнялось неравенство

f(x1,x2,…,xn)<f(x10,x20,…,xn0)

                                               (>)

Если эту окрестность взять настлько малой, что бы знак равенства был исключён, т. е. чтобы в каждой её точке, кроме  самой   точки (x10,x20,…,xn0) выполнялось строгое неравенство

f(x1,x2,…,xn)<f(x10,x20,…,xn0)

                                               (>)

то говорят, что в точке (x10,x20,…,xn0) имеет место собственный максимум (минимум), в противном случае максимум (минимум) называют несобственным.

Для обозначения максимума и минимума (как и в случае одной переменной) употребляется общий термин – экстремум.

Предположим, что наша функция в некоторой точке (x10,x20,…,xn0)  имеет экстремум,

Покажем, что если в этой точке существуют (конечные) частные производные

fx1’(x10,x20,…,xn0) ,…, f ’xn(x10,x20,…,xn0)

то все эти частные производные равны нулю, так что обращение в нуль частных производныхпервого порядка является необходимым условием существования экстремума.

С этой целью положим x2=x20,…,xn= xn0 сохраняя x1  переменным ; тогда у нас получится функция от одной переменной x1 :

u=f(x1, x20,…,xn0)

Так как мы предположили, что в точке (x10,x20,…,xn0) существует экстремум (для определенности - пуcть это будет максимум), то, в частности, отсюда следует, что в некоторой окрестности(x10-  , x10+  ) точки x1= x10, необходимо должно выполняться неравенство

f(x1, x20,…,xn0)< f(x10,x20,…,xn0)

так что упомянутая выше функция одной переменной в точке x1= =x10 будет иметь максимум, а отсюда по теореме Ферма следует, что

fx1’(x10,x20,…,xn0)=0

Таким образом можно показать, что в точке (x10,x20,…,xn0)

 и остальные частные производные равны нулю.

Итак, «подозрительными» на экстремум являются те точки, в которых частные производные первого порядка все обращаются в нуль: их координаты можно найти, решив систему уравнений

fx1’(x10,x20,…,xn0)=0

                           …………………….                      (5.1)

f ’xn(x10,x20,…,xn0)=0

Как и в случае функции одной переменной, подобные точки называются стационарными.

Замечения :Необходимое условие существования экстремума в случае дифференцируемой функции кратко можно записать так :

d f(x1,x2,…,xn)=0

так как, если fx1’= fx2’=…= f ’xn , то каковы бы ни были dx1,dx2,…,dxn всегда

f(x1,x2 d,…,xn)= fx1’ dx1+ fx2’ dx2+…+ f ’xn dxn=0

И обратно : если в данной точке тождественно выполняется это условие, то ввиду произвольности dx1,dx2,…,dxn производные fx1’, fx2’,…, f ’xn  порознь равны нулю.

Обычно, рассматриваемая функция f(x1,x2,…,xn) имеет (конечные) частные производные во всей области, и тогда точки, доставляющие функции экстреммы, следует искать лишь среди стационарных точек. Однако встречаются случаи, когда в отдельных точках некоторые частные производные имеют бесконечные значения или вовсе не существуют (в то время как остальные равны нулю). Подобные точки, собственно, тоже следует причислить к «подозрительным» по экстремуму, наряду со стационарными.

Иногда дается и не прибегая к достаточным условиям выяснить характер стационарной точки функции. Так, если из условия задачи непременно следует, что рассматриваемая функция имеет где-то максимум или минимум и при этом системе уравнений (5.1) удовлетворяет только одна точка, то ясно, что эта точка и будет искомой точкой экстремума функции.

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.