скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Допплеровский измеритель скорости кровотока

Сечение  датчика

В таблице погрешности измерения площади поперечного сечения сосуда из-за ошибки в измерении диаметра. Из этой таблицы видно, что указанные ошибки достаточно высоки особенно для малых сосудов.

Таблица 2. Погрешность измерения площади поперечного сечения сосуда для сосудов различного диаметра.

Диаметр, мм 2 5 10 15 20 25
Погрешность, % 75 36 19 13 10 10

Дополнительным источником погрешности является изменение площади поперечного сечения пульсирующей артерии. Изменение в 10% характерно для крупных сосудов.

Высокочастотный фильтр

Для того, чтобы уменьшить влияние на результаты измерения очень сильного эхо-сигнала отраженного от стенок сосуда, этот сигнал обычно отфильтровывается высокочастотным фильтром. Этим же фильтром убираются низкочастотные составляющие от медленно движущейся крови. Обычно применяется фильтр с перестраиваемой частотой среза. 

Движение сосуда

Изменение или даже потеря допплеровского сигнала может быть обусловлена движением исследуемого сосуда при дыхании.

Турбулентность

Это явление присуще даже нормальным сосудам и становиться сильно выраженным для сосудов с патологией из-за изменения структуры сосуда. Наличие турбулентности на сонограмме затрудняет нахождение средней скорости в сосуде вплоть до невозможности решения этой задачи. Любой признак наличия турбулентности в сосуде ставит под сомнение правильность измерения средней скорости.

Расширение спектра

Как показали эксперименты, проводимые на имитаторах потока, эффект спектрального расширения в довольно слабой степени влияет на результаты измерения.

Ошибки измерения индексов

Довольно трудно или вообще невозможно добиться равномерного облучения исследуемого сосуда (особенно крупного).  Изменение чувствительности непрерывно-волнового датчика зависит и от приемного и от передающего элементов, а также, от их взаимного расположения и ориентации. Evans и Рarton (1981) и Douville с соавторами (1983) опубликовали результаты исследования диаграмм направленности таких датчиков, причем в обоих случаях отмечались существенные различия характеристик этих датчиков, выпущенных даже одним и тем же производителем.

Обычно исследования проводятся по «наилучшему» сигналу, наблюдаемому на мониторе. В этом случае, вероятность перекрытия УЗ лучом центра сосуда довольно велика. Если сечение сосуда достаточно мало, УЗ пучок полностью перекрывает его и спектр содержит информацию о всех составляющих кровотока. В противном случае, часть сосуда остается вне диаграммы направленности и допплеровский спектр, а также индексы, рассчитываемые на его основе, оказываются несостоятельными.

Главным выводом является то, что неравномерное облучение исследуемого сосуда серьезным образом влияет на форму допплеровского спектра, что, в свою очередь, приводит к неправильному расчету индексов.

Анализ огибающей допплеровского сигнала

Целью анализа допплеровского сигнала является выявление отклонений его формы от нормальной. Характер этих отклонений может свидетельствовать о наличие тех или иных физиологических или патологических нарушений в состоянии исследуемого сосуда.

Задачу анализа допплеровского сигнала можно разбить на три этапа: прием и предварительная обработка этого сигнала, выделение параметров сигнала и классификация. Прием, в частности, заключается в выделении некоего вектора, например, огибающей скорости кровотока, или спектра мощности допплеровского сигнала, описывающего кровоток в исследуемой артерии. Второй этап состоит в выделении характерных параметров исходного вектора и вычислении на их основе нового вектора, компонентами которого являются, например, индекс пульсации и индекс спектрального расширения. И, наконец, классификация заключается в принятии решения о нормальном или патологическом состоянии исследуемого сосуда.

Необходимо отметить, что каждый последующий этап зависит от предыдущего, поэтому различные методы исследования сосудов, различные метолы цифровой обработки и различные алгоритмы расчета огибающей в совокупности будут влиять на результаты и на качество обработки последующих этапов.

Опытный специалист может много сказать о состоянии исследуемого сосуда только по аудио сигналу допплеровского сдвига или по виду спектрограммы. В этом случае довольно затруднительно бывает определить точную причину того или иного заключения.

С другой стороны, объективные методы не полагаются на оценку пользователя, они должны обеспечить свободный обмен медицинскими методиками между различными учреждениями, и могут выявить скрытые изменения сигнала. В настоящее время, однако, большинство объективных методов сосредоточено на одной стороне сонограммы (например, на огибающей) и могут игнорировать очевидные для человеческого взгляда вещи.

Вывод:

Исходя из вышеизложенного,  ультразвуковой медицинский допплеровский прибор целесообразно рассматривать не как средство измерения скорости кровотока или его составляющих, а как средство индикации, позволяющее лишь качественно оценить состояние исследуемого сосуда в частности и сердечно-сосудистой системы в целом.

2.4.   Расчет надежности

Надежность является одной из основных инженерных проблем. Проблемой надежности занимались всегда с тех пор, как появилась техника. Ненадежные изделия никогда никому не были нужны. Давно уже было понятно, что надежность связана с избыточностью. В связи с этим в инженерных расчетах в различных областях тех­ники широко используются необходимые коэффициенты запаса.

Однако за последние 25—30 лет проблема надежности техниче­ских систем и входящих в нее элементов сильно обострилась. Это обусловлено главным образом следующими причинами:

*                     Ростом сложности современных технических систем, включающих до  104-106 отдельных элементов;

*                     Интенсивностью  режимов   работы  системы   или   отдельных
ее частей: при высоких температурах, высоких давлениях, высоких скоростях;

*                     Сложностью условий, в которых эксплуатируется техническая система, например: низкие или высокие температуры, высокие влажность, вибрации, ускорения и радиация и т. п.;

4. Требованиями к качеству работы системы: высокие точность, эффективность и т. п.;

         Повышением ответственности функций, выполняемых систе­мой; высокой технической и экономической ценой отказа;

         Полной  или  частичной  автоматизацией  и  исключением  не­посредственного  участия  человека   при   выполнении  технической системой  ее функции,  исключением  непрерывного наблюдения и контроля со стороны человека.

Одной из главных причин обострения внимания к проблеме надежности является рост сложности технических систем.

Сложность условий, в которых могут эксплуатироваться сов­ременные технические системы, характеризуется работой в широких диапазонах температур от -70 до +70, наличием вакуума, вы­сокой (98—100%) влажностью, вибрациями с большой амплиту­дой и широким спектром частот, наличием линейных ускорений до 10-300 (1000) и даже 20 000 g, наличием высокой солнечной и кос­мической радиации.

Это приводит к тому, что вероятности возникновения отказов могут возрасти в 25—100 или даже 500—1000 раз по сравнению с вероятностью отказов при работе технических систем в условиях лабораторий.

Сложность аппаратуры и тяжелые эксплуатационные условия контроль за  исправностью аппаратуры,   входящей  в техническую систему, что не дает возможности,

своевременно обнаружить процессы, приводящие к отказу, и предупредить его появление.

Проблема  обеспечения  надежности связана со всеми этапами создания  изделия и  всем  периодом его  практического использования. Надежность изделия закладывается в процессе его конструирования и расчета и обеспечивается в процессе его изготовления путем правильного выбора технологии производства, контроля каче­ства исходных материалов, полуфабрикатов и готовой продукции, контроля режимов и условий изготовления.

Надежность сохраняется применением правильных способов хранения изделий и поддерживается правильной эксплуатацией его, планомерным уходом, профилактическим контролем и ре­монтом.

I. При проектировании изделия должны быть учтены следую­щие факторы:

Качество применяемых компонентов и деталей. Выбор  ком­плектующих компонентов и элементов должен быть проведен с уче­том условий работы изделия (климатических и производственных).Элементы должны удовлетворять требованиям по своим функцио­нальным свойствам и характеристикам, иметь необходимую меха­ническую, электрическую и тепловую прочности, требуемую точность и надежность и заданных условиях эксплуатации.  Необхо­димо стремиться применять те компоненты и элементы, входящие в схему и конструкцию изделия, которые показали в случаях, ана­логичных конструируемому изделию, наилучшие результаты. Это особенно важно для изделий, выполняющих ответственные функции.

        Разработка сложных изделий и систем показала, что при ис­пользовании унифицированных компонентов, деталей, узлов и эле­ментов резко повышается надежность изделия (системы). Это свя­зано с тем, что унифицированные элементы лучше отработаны в схемном и конструктивном отношении и имеют установившуюся и хорошо контролируемую технологию изготовления.

В настоящее время широко распространяется модульно-блочный (агрегатный) принцип построения схем и конструкций сложных изделий. Сложное изделие (система) составляется из функциональ­ных элементов, конструктивно оформленных в виде типовых, стан­дартных по конструкции модулей или блоков. Стандартизация входных и выходных сигналов, параметров источников питания, габаритных и присоединительных размеров обеспечивает совмест­ную согласованную работу их в изделии;

2)         режимы работы компонентов и деталей. Это должно соответ­ствовать их физическим возможностям. Использование компонентов и деталей в режимах, не предусмотренных для их применения, является одним из основных источников отказов.

Неправильный выбор рабочих режимов обычно происходит от незнания конструктором свойств элементов, их характеристик, влияния различных физических факторов и особенностей приме­нения.

Нельзя допускать режимы более тяжелые, чем те, которые ука­зываются в официальной технической документации на компонен­ты, детали или элементы и приборы, выбираемые при конструиро­вании данного изделия.

Существенным также является схемное решение и конструк­ция изделия в целом. Наличие переходных процессов в схеме в от­дельные моменты ее работы может вызывать появление дополни­тельных факторов, приводящих к отказам. Разным вариантам раз­мещения компонентов, деталей и элементов внутри изделия будет соответствовать различный микроклимат, различные по величине воздействия вибраций, радиации и т. д.

Таким образом, правильный выбор и применение компонентов и элементов схем и деталей конструкции, тщательная разработка схемы и ее компоновки, а также конструкции изделия являются важным условием в достижении его высокой надежности;

3)доступность всех частей изделия и входящих в них компо­нентов, деталей, узлов, блоков и элементов  для осмотра, контроля и ремонта или замены. Это является важным условием в поддер­жании  надежности  в  период эксплуатации.   В  настоящее время
широко распространенный модульно-блочный   (агрегатный)   прин­цип построения изделия позволяет легко заменять отдельные эле­менты при сохранении обшей работоспособности изделия (системы).
       Легкий доступ к приборам, элементам, узлам, деталям конструкции и компонентам схем для осмотра облегчает эксплуатацию изделия(системы) в целом и обеспечивает быстрое восстановление его рабо­тоспособности после появления отказа.

В случае сложных изделий и систем находят применение уст­ройства для автоматического контроля исправности изделия (сис­темы). Такие устройства могут использоваться либо для проверки исправности изделия (системы) перед началом ее работы, либо для непрерывного автоматического контроля и индикации исправности аппаратуры изделия в процессе его работы. Наличие таких уст­ройств, позволяющих персоналу объективно судить о работоспособ­ности изделия, имеет большое значение для его эффективности ис­пользования;

4) защитные устройства. При проектировании изделии (систем) для автоматического регулирования и управления необходимо та­кое построение схем и конструкций, чтобы отказ в работе элемента, узла, прибора не приводил к аварийному состоянию всего объекта.
      В случае, если этого не удается добиться при построении основной схемы  или конструкции изделия, то необходимо введение специальных элементов или устройств защиты, позволяющих предотвра­тить развитие аварийной ситуации (например, путем перехода на работу в более грубом режиме, включения резервной системы управ­ления и т. п.)- Одним из путей защиты является применение резер­вирования элементов, приборов и устройств, несущих наиболее ответственные функции.

II. При эксплуатации изделий основными факторами, влияю­щими на их надежность, являются:

условия эксплуатации:  климатические и производственные. Воздействие высоких или низких температур окружающей среды; большие сезонные и суточные колебания температуры и влажности; высокая влажность, туман, дождь, иней оказывают большое влия­ние на надежность аппаратуры, работающей  вне помещений. Не меньшее влияние оказывают высокие температуры, резкое их изме­нение, наличие влаги и различных агрессивных примесей в воздухе при использовании в помещениях цехов металлургических и хими­ческих заводов   Размещение аппаратуры около крупных агрегатов и силовых установок или около крупных машин связано с воздей­ствием на них механических, а часто и акустических колебаний. Это вызывает ускорение старения материалов и появление отказов. Если аппаратура устанавливается на подвижных объектах: кораб­лях,   поездах,  автомобилях,  самолетах,   ракетах,  то  к  действию
климатических   факторов   прибавляется   воздействие   вибраций   и ускорений;

тщательно   продуманная   система   обслуживания   имеет  существенное значение для сохранения надежности изделий (аппара­туры). Налаженный уход за аппаратурой, периодический профи­лактический осмотр и контроль, установленная по регламенту чист­ка и подналадка, ремонт и замена износившихся деталей и элемен­тов, характеристики которых показали при очередном контроле отклонения от нормы, позволяют предотвратить отказы и продлить срок службы изделия.

Следует указать на то, что создание системы правильного об­служивания современных сложных технических систем часто требует больших предварительных исследований и приводит к появле­нию нового научного направления, связанного с разработкой тео­ретических основ и инженерных методов организации оптимального обслуживания;

3) квалификация и ответственность обслуживающего персонала имеют важнейшее значение для обеспечения надежности, долговеч­ности и эффективности работы изделия (аппаратуры). Надежность работы аппаратуры одного и того же типа будет существенно отли­чаться, если обслуживающий персонал имеет неодинаковую под­готовку, либо различную степень ответственности за исправность аппаратуры и выполнение ею заданных функций.

Опыт показывает, что частая смена персонала снижает ответ­ственность и, с другой стороны, мешает ему полностью освоить ап­паратуру. Современные сложные изделия для глубокого изучения и освоения требуют значительного времени практической работы, в течение которого вырабатываются необходимые навыки в качествен­ном проведении профилактических работ, быстрой и правильной на­стройке и регулировке аппаратуры, в отыскании н устранении несложных отказов и неисправностей, замене быстро изнашиваемых частей и деталей.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.