скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Автоматизация процесса получения сернистого ангидрида при производстве серной кислоты

1. Печь обжига серы, поз. 106

Печь имеет цилиндрическую форму с расширением в верхней части. Общий  объем печи 222мз. Конус шахты печи стальной, внутри футерован огнеупорным кирпичом. Днище в четырёх секторах залито огнеупорным бетоном, в двух секторах, примыкающим к загрузчикам серы, находятся целевые сопла, через которые подаётся воздух. В центре свода печи находится газоход, отводящий обжиговый газ в котёл утилизатор. Печь внешней части имеет диаметр 4,75 м, в верхней части (сепарационное пространство) – 6,2м. Производительность печи до 4 т. Серы в час.

2. Котёл – утилизатор ГТКУ – 13/40, ГТКУ – 10/40, поз. 104.

Котёл – утилизатор оснащен естественной циркуляцией, футерован шамотным кирпичом, теплоизолирован минеральной ватой. Котёл состоит из газотрубных  секций и барабана. Охлаждение газа происходит в 24 испарительных секциях котла ГТКУ – 13/40 и 15 испарительных секциях котла ГТКУ – 10/40. Газотрубная секция состоит из двух коллекторов (входного и выходного), соединённых по воде вертикальными трубками. Вертикальные трубки двойные (труба в трубе). Через внутреннюю трубу диаметром 102*6 мм проходит обжиговый газ, в межтрубном пространстве - паровая эмульсия. Пройдя газотрубные секции, обжиговый газ - имеет направление снизу, вверх по футерованному газоходу, направляется на мокрую очистку. Барабан котла горизонтальный цилиндр V=12 мз, оборудован четырьмя водоуказательными колоннами, люком, штуцерами для подвода питательной воды, отвода пара, установки манометра, подключения приборов для замера уровня и давления.

Пар из барабана собирается в коллектор и с температурой 249 С отводится по трубопроводу диаметром 108*4 мм к общему паропроводу диаметром 159*7 мм. Низко расположенные части трубопроводов котла и

барабана имеют штуцера с арматурой, служащей для периодического вывода  из циркуляционной системы котла (продувки), котловая вода с большим содержанием солей из барабана котла по трубопроводу непрерывной продувки через регулирующий игольчатый вентиль поступает в сепаратор непрерывной продувки.

3. Сепаратор непрерывной продувки.

Представляет собой цилиндрический сосуд емкостью 1.5М3. В верхней части имеет жалюзийное устройство для удаления пара из капель воды. Рабочее давление 700кПа. Пари из сепаратора используется на собственные нужды.

4. Деаэратор, (поз. 106).

Состоит из деаэраторной колонки производительностью 100т/час и аккумуляторного бака емкостью 500М3. Деаэраторная колонка – вертикальный цилиндр диаметром 1500мм и высотой 2000мм, приварен к аккумуляторному баку. Внутри колонки расположено водораспределительное устройство, в которое подается химически отчищенная вода. Пар поступает через парораспределительное устройство в низу колонки. Поднимаясь вверх, он нагревает поступающую в деаэратор воду, сам при этом конденсируется. Деаэраторная вода собирается в аккумуляторном баке, горизонтальном цилиндрическом сосуде 3250* 8170* 8мм.

5. Сборник конденсата.

Это горизонтальный цилиндрический сосуд емкостью 40М3, теплоизолирован минеральной ватой.

6. Насос перегонки конденсата типа 3к – 9.

Центробежный, консольный, одноступенчатый, с горизонтальным осевым подводом жидкости. Производительность - 45М3/час, напор 31м водяного столба.

7. Емкость для хранения дизельного топлива.

Горизонтальный цилиндрический сосуд диаметром 2700мм, длина – 10875мм, V= 50, 67мз

8.Насос самовсасывающий предназначен для подачи дизельного топлива на технологические нужды. Производительность 20мз/час, напор 24м водяного столба.

Питательные насосы – двух типов: отечественный ПЭ – 65 – 56 и насос польского производства 80VS8.

Насос ПЭ – 65 – 56 центробежный, секционный, горизонтальный, однокорпусный, 8 – ступенчатый; производительность 65 мз/час, напор 580 м водяного столба.

Насос 80VS8 – лопастной многоступенчатый с последовательно расположенными одноструйными радиальными рабочими колёсами. Марка насоса обозначает: 8 – ступенчатый насос с диаметром штуцера нагнетания 80 мм.

10.Дымосос CHS – 100, поз. 110.

Производительность 100000 мз/час. Напор 200 м водяного столба.

11.Воздуходувки типа Э 400 12 – 2м, Э – 400 12 – 3, поз. 102. Имеет привод от электродвигателя 250 кВт со скоростью вращения 2940 об./мин., напором 1900мм водяного столба. Корпус изготовлен из чугуна, ротор из высококачественной стали.

12. Бункера серы 1а, 1б, 23 – стальные, внутри обложены дюралюминием, для исключения искрообразования. V=15 мз. Оснащены форсунками для смачивания серы. Бункера 1а, 1б оборудованы решеткой 100*100 мм.

13. Ленточные транспортеры; поз. 2а – длина 18,7м; поз 2б – 10м; поз. 8а – длина 140м; поз. 21 – длина 140 м; поз. 24 – ленточный питатель.

Все транспортёры оснащены лентой 2РШ – 800 – 4. винтовой конвейер поз. 3а – длина 5м. Транспортёры ограждены по всей длине, включая барабаны.

14. Грейферный кран поз. 12. Грузоподъёмность - 16 т, пролет - 28,5 м, емкость грейфера – 3м3.

N1- 70кВт , n = 735 oб/мин.

N2- 10кВт , n = 945 oб/мин.

N3- 35кВт , n = 730 oб/мин.

15. Маневровое устройство (поз. 13) скорость движения 0.14м/сек или 0.5 км/час, N = 7.5кВт, n = 1000


2.Описание функциональной схемы автоматизации.

Для автоматического поддержания и контроля режимов работы печи обжига серы необходимо ее оснастить контрольно измерительной аппаратурой и автоматикой:

- измерительные (первичные) приборы;

- преобразователи в унифицированный электрический сигнал;

- микроконтроллер;

- магнитные реверсивные пускатели;

- исполнительные механизмы.

Система регулирования предусматривает:

- дистанционное управление каждым регулирующим органом;

- автоматическое поддержание заданных технологических параметров;

- ручное изменение заданий.

Система автоматизации процесса получения серного ангидрида предусматривает следующие контура управления:

- поддержание температуры выходящего газа на уровне 1050С;

- поддержание расхода воздуха.

Входным параметром участка обжига серы является количество серы подаваемой ленточным транспортером (поз. 24) в печь (поз. 101). В печи серы сгорает, выделяя газ SO2 , и теплоту Q. Так как температура выходящего газа из печи недолжна превышать 1055С выбирается датчик термопара «ТХА -8». В связи с тем что значение температуры необходимо ввести в

микроконтроллер необходим нормирующий преобразователь «БУТ- 10». На выходе нормирующего преобразователя унифицированный токовый сигнал (от 0 до 5 мА). Выходной сигнал преобразователя непосредственно передается на вход микроконтроллера. Информация о температуре выходящего серного ангидрида микроконтроллером сравнивается с заданием, микроконтроллер изменяет значение токового выхода (от 0 до 5мА) поступающего на вход магнитного усилителя. В свою очередь магнитный усилитель преобразует входной сигнал. В постоянное напряжение, поступающее на якорную цепь двигателя постоянного тока. При изменении входного сигнала (от 0 до 5 мА) изменяются обороты двигателя (от 30 до 500об/мин). Двигатель через редуктор соединен с ленточным транспортером, подающим серу в печь, таким образом температура выходящего газа при постоянном потоке воздуха зависит от количества поступающей серы в печь.

Для оптимального протекания технологического процесса обжига серного ангидрида, необходимо поддержания серы в печи в взвешенном состояния в ходе окисления серы, поэтому необходимо поддерживать постоянную разность давлений на входе и выходе из печи (поз. 101); создаваемый  перепад давлений воздуха комовой серы находящейся во взвешенном состоянии при прохождении нагнетаемого воздуходувкой (поз. 102), воздушного потока подается на преобразователь «Сапфир 22 ДД». Его выходной сигнал (электрический унифицированный сигнал (от 0 до 5 мА)) поступает на вход микроконтроллера, текущее значение перепада давления, создаваемого, «кипящем» слоем комовой серы микроконтроллер сравнивает с заданием. Если значение перепада давления неровно заданному, микроконтроллер изменяет значение выходного значения , поступающего на электропневматический преобразователь «ЭП 3211». В свою очередь изменяется выходное значение давления на выходе электропневматического преобразователя «ЭП – 3211» подаваемого на пневматический

исполнительный механизм «ПСПТ – 1». ОН установлен на воздуховоде по которому в печь поступает атмосферный воздух. Изменение значения давления на входе «ПЕП – Т – 1» приведет изменения положения регулирующего органа (шибера) и как следствие изменяется расход воздуха. В следствии того будет скомпенсировано отклонение перепада давления в печи от задания.

Так же для полной информации об объекте необходимо, ввести в микроконтроллер текущее значение расхода воздуха подаваемого на окисление в печь обжига серы. Для этого на воздуховоде, по которому подается атмосферный воздух, установлен датчик диафрагма: «ДБ 2.5 – 500». Создаваемый перепад давления диафрагмы при прохождении воздушного потока подается на дифманометр «Сапфир – 22ДД». Его выходной электрически унифицированный сигнал поступает в микроконтроллер, где напоминается и передается через стандартный модем на центральную электронно - вычислительную машину, где текущее значение регистрируется и отображается на мониторе.

При работе воздуходувки (поз. 102), происходит нагрев подшипников скольжения. Превышение температуры масла, подаваемого под давлением в подшипники скольжении, выше 80С может привести к выходу из строя привода воздуходувки.


3. Синтез и анализ автоматической системы регулирования температуры.

Процессы химической технологии (при рассмотрении её с точки зрения задач управления) обычно предоставляют в виде динамических систем, поведение которых во времени определения текущими значениями ряда характерных величин – расходов, протекающих через аппараты, веществ их температуры, давления концентрации и т.д. При нормальном протекании процесса эти величины имеют определённые, так называемые количественные значения. В силу ряда внешних причин (изменение состава и расходов и др.) или явлений протекающих в самом аппарате, указанные величины могут отклоняться от номинальных значений. Это приводит к нарушению процесса, снижению количества и качества продукции, интенсивному износу оборудования. Чтобы процесс протекал нормально им необходимо управлять. Управление – целенаправленное воздействие на объект, которое обеспечивает его оптимальное функционирование и количественно оценивается величиной критерия качества. Критерии могут иметь технологическую или экономическую природу.

Различают величины входные и выходные. Под входными величинами понимают: изменение расхода вещества, его состава количества подаваемого тепла, количества подаваемого тепла и т.д. к выходным величинам относятся: температура вещества, концентрация, влажность и д.р. Состояние объекта в каждый момент времени определяется значениями его выходных величин.

Во время работы выходные величины отклоняются от заданных значений под действием возмущений, и получается рассогласование между текущими и заданными значениями выходных величин объекта. Если при наличии возмущений объект самостоятельно обеспечивает нормальное функционирование, то есть самостоятельно устраняет возмущающее рассогласование выходной величины, то он не нуждается в управлении. Если

же объект не обеспечивает выполнение условий нормальной работы, то для нейтрализации влияния возмущений на него оказывается управляющее воздействие (изменение с помощью исполнительного устройства), таким образом, в процессе управления на объект наносятся управляющие воздействия, которые компенсируют возмущения и обеспечивают поддержание нормального режима его работы.

Управление может быть ручным или автоматическим. Ручное или автоматическое воздействия на химико технологический объект через через исполнительное устройство осуществляет оператор, наблюдающий за ходом процесса или автоматический регулятор. Оператор следит за отклонениями режима работы объекта от требуемого и, в зависимости от этого отклонения воздействует на исполнительное устройство таким образом, чтобы процесс удовлетворял заданным условиям. При автоматическом управлении, воздействие на объект осуществляется специальным автоматическим устройством в замкнутом контуре; такое соединение элементов образует автоматическую систему управления. Частным случаем управления является регулирование. Регулированием называется  поддержание выходных величин объекта вблизи требуемых постоянных или переменных  значений с целью обеспечения нормального режима его работы посредством подачи на объект управляющих воздействий.

Учитывая достоинства и недостатки рассмотренных систем автоматического регулирования  и свойства объекта (большёе запаздывание, входные возмущающие воздействия разнообразны и не значительны по отдельности) выбирается система автоматического регулирования по заданию. Управляющим воздействием будет изменение расхода серы подаваемой на окисление в печь обжига серы. Возмущающими воздействиями для данного объекта является:

 - атмосферное давление;

 - влажность окружающего возраста;

 - влажность серы;

 - фракции комовой серы неоднородны;

 - нестабильность частоты вращения редуктора ленточного транспортёра.

3.1.Обзор и выбор методов измерения температуры сернистого ангидрида.

В устройствах для измерения температуры обычно используют изменение какого -  либо физического свойства тела, однозначно зависящего от его температуры и легко поддающегося измерению. К числу свойств, положенных в основу работы прибора для измерения температуры, относятся объемное  расширение тел, изменение давления вещества в замкнутом объеме, возникновение термоэлектродвижущей силы, изменение электрического сопротивления проводников и полупроводников, интенсивность излучения нагретых тел и др.

При измерении температуры  используют две шкалы: термодинамическую, основанную на втором законе термодинамики и международную практическую (МПТШ - 68).

В термодинамической шкале температуру обозначают символом Т и выражают в Кельвинах (К). Единицей измерения температуры (t) в международной  практической шкале служит градус (С), 1С = 1К.

Количественно температура в термодинамической и международной практической  шкалах взято отношением:

Т(К)=t(C)+273,15

Температуру измеряют с помощью термометров. В зависимости от физических свойств, на которых основано действие приборов для измерения

температуры различают: манометрические термометры, термометры расширения, термоэлектрические термометры, термометры сопротивления и пирометры излучения.

Термометры расширения построены на принципе изменения объема жидкости (жидкостных) или линейных размеров твёрдых тел при изменении температуры.

Действие жидкостных термометров основано на различии коэффициентов теплового расширения термометрического вещества (ртуть или спирт) и оболочки, в которой оно находится (термометрическое стекло или кварц). Такие термометры применяются для местных измерений в пределах от – 190 до 600 С. Их основные достоинства – простота и высокая точность измерения, недостатки – невозможность ремонта, отсутствие автоматической записи и передачи показаний на расстояние.

Работа биметаллических  термометров основана на различии коэффициентов теплового расширения твёрдых тел, из которых выполнены чувствительные элементы (Пластина или спиральная лента, состоящая из двух слоёв разнородных металлов).Пределы измерения таких термометров от -150 до +700 С. Они используются в качестве измерительных преобразователей автоматических систем регулирования.

Действия манометрических термометров основано на изменении давления жидкости (жидкостные), парожидкостные смеси (конденсационные), или газа (газовые), находящиеся в замкнутом объеме, при изменении температуры. Они состоят из чувствительного элемента (термобаллон), соединительного капилляра и вторичного прибора манометра. Класс точности  манометрических термометров 1,0 – 2,5. Они используются для дистанционного (до 60 м) измерение температур в пределах от – 160 до +600 С. К достоинствам относится простота конструкции, обслуживания, возможность дистанционного измерения и автоматической записи показаний, к недостаткам – невысокая точность

измерений, небольшое расстояние дистанционной передачи показаний.

Термоэлектрические манометры состоят из электрического преобразователя (термопары) действие которого основано на использовании зависимости термоэлектродвижущей силы (ТЭДС) термопары от температуры рабочего спая, если температура свободного спая постоянна, и вторичного прибора. При увеличении разности температур между рабочим и свободным спаями термопары величина ТЭДС возрастает. Наибольшее распространение получили следующие типы термоэлектрических преобразователей.

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.