скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Отопительно-производственная котельная птицефабрики

 ,кВт

В летний период, для обеспечения необходимого потока теплоты на горячее водоснабжение и технологические нужды, в котельной будут работать один котел мощностью:

 ,кВт

4. Регулирование отпуска теплоты котельной

В связи с тем, что тепловая нагрузка потребителей не постоянна, а изменяется в зависимости от температуры наружного воздуха, режима работы системы вентиляции, расхода воды на горячее водоснабжение и технологические нужды, экономичные режимы выработки тепловой энергии котельной должны обеспечиваться центральным регулированием отпуска теплоты по преобладающему виду тепловой нагрузки. Вид теплоносителя определяет способ регулирования отпуска теплоты потребителям. В водяных тепловых сетях применяется качественное регулирование подачи теплоты, осуществляемое путем изменения температуры теплоносителя при постоянном расходе.

При теплоснабжении жилых, общественных и производственных сельскохозяйственных зданий и сооружений центральное качественное регулирование в водяных тепловых сетях обычно ведут по отопительной нагрузке. Температуру теплоносителя изменяют в соответствии с температурным графиком, который строят в зависимости от расчетных температур наружного воздуха.

При построении графика температур воды в тепловой сети исходят из аналитических зависимостей температуры воды в подающем и обратном трубопроводах от наружной температуры. Поскольку эти зависимости близки к линейным, ограничимся приближенным построением графика при параметрах теплоносителя 110-700С.

По оси абсцисс откладываем значения наружной температуры, по оси ординат - температуру сетевой воды. Начало координат совпадает с расчетной внутренней температурой производственных(или птицеводческих) зданий (180С) и температурой теплоносителя, также равной 180С. На пересечении перпендикуляров, восстановленных к осям координат в точках, соответствующим температурам =1100С и tн=-310С, находим точку А, а проведя горизонтальную прямую от температуры обратной воды 700С, -точку В. Соединим точки А и В с началом координат, получим график изменения температуры прямой и обратной воды в тепловой сети в зависимости от температуры наружного воздуха.

При наличии нагрузки горячего водоснабжения температура теплоносителя в подающей линии сети открытого типа не должна опускаться ниже 600С, поэтому температурный график для подающей воды имеет точку излома С, левее которой =const. Подачу теплоты на отопление при постоянной температуре  регулируют изменением расхода теплоносителя.

Минимальная температура обратной воды определяется, если через точку С провести вертикальную линию до пересечения с графиком обратной воды. Проекция точки D на ось координат показывает наименьшее значение обратной воды (420С)

Перпендикуляр, восстановленный из точки, соответствующей расчетной наружной вентиляционной температуре (-160С), пересекает прямые АС и BD в точках Е и F, показывающих максимальные температуры прямой и обратной воды для систем вентиляции. По графику определим эти температуры соответственно 820С и 540С , которые в диапазоне от tн.в до tн остаются неизменными (линии ЕК и FL). В этом диапазоне температур наружного воздуха вентиляционные установки работают с рециркуляцией, степень которой регулируется таким образом, чтобы температура воздуха, поступающего в калорифер, оставалась постоянной.

5. Подбор питательных устройств и сетевых насосов

Для принудительной циркуляции воды в тепловых сетях в котельной устанавливают два сетевых насоса с электроприводом (один из них резервный). Подачу сетевого насоса (м3/ч), равную часовому расходу сетевой воды в подающей магистрали, определяют по формуле [стр.134]:

 , (5.1)

где Фр.в=Фр-Фс.н - расчетная тепловая нагрузка, покрываемая теплоносителем - водой, Вт; tп и t0 - расчетные температуры прямой и обратной сетевой воды, 0С;  - плотность обратной воды (при t0=700С =977,8 кг/м3); Фс.н - тепловая мощность, потребляемая котельной на собственные нужды (подогрев и деаэрация воды, отопление вспомогательных помещений и др.), определим по формуле [стр.134]:

(5.2)

 ,Вт

Определим подачу сетевого насоса (5.1):

 ,м3/ч

Напор, развиваемый сетевым насосом, зависит от общего сопротивления тепловой сети. Если же теплоноситель получают в водогрейных котлах, то учитывают также потери давления в них. Ориентировочно принимают Рсет.н=200...400 кПа.

Выберем Рсет.н=400 кПа.

Подпиточные насосы компенсируют разбор воды из открытых тепловых сетей на горячее водоснабжение и технологические нужды, а также восполняют утечки воды, составляющие 1...2% ее часового расхода. Подача подпиточного насоса (м3/ч) [стр.134]:

, (5.3)

где Фг.в - расчетная тепловая нагрузка горячего водоснабжения, Вт; Фт.н.в - часть расчетной тепловой нагрузки на технологические нужды, покрываемая теплоносителем - водой, Вт; tг и tх - расчетные температуры горячей и холодной воды, 0С; пп - плотность подпиточной воды, можно принять , кг/м3.

 м3/ч

Напор развиваемый подпиточными насосами, Рпп.н=200...600 кПа.

Выберем Рпп.н=600 кПа.

В котельной должно быть не менее двух подпиточных насосов, из которых один резервный, Устанавливают их перед сетевыми насосами, подавая в систему химически очищенную воду из деаэраторов или баков - аккумуляторов подпиточной воды. В качестве сетевых и подпиточных используют центробежные консольные насосы типа К и КМ.

Насосы выбирают по расчетным значениям подачи и напора.

Выберем сетевой насос по [прил.15],марки 3К-6 и КПД 60%. Подпиточный насос по этому же приложению выбираем марки 2,5МЦ-0,8М с КПД 40%.

Мощность (кВт), потребляемая центробежным насосом с электроприводом, определяется по формуле [стр. 135]:

 , (5.4)

где Qн - подача насоса, м3/ч; Рн - напор, создаваемый насосом, кПа;  - КПД насоса.

Определим мощность сетевого насоса по формуле (5.4):

 ,кВт


Определим мощность подпиточного насоса

 ,кВт

Теперь по справочнику асинхронных двигателей [3], выберем двигатели для привода сетевого и подпиточного насоса.

Для привода сетевого насоса будем использовать двигатель АИРМ 132М4 мощностью 11 кВт и синхронной частотой вращения 1500 об/мин.

Для привода подпиточного насоса будем использовать двигатель АИРМ 112М4 мощностью 5,5 кВт и синхронной частотой вращения 1500 об/мин.

6. Расчет водоподготовки

В производственно-отопительных котельных получила распространение до котловая обработка воды в натрий-катионитовых фильтрах с целью ее умягчения. Объем катионита (м3), требующийся для фильтров, находят по формуле [стр 135]:

 (6.1)

где  - расчетный расход исходной воды, м3/ч;  - период между регенерациями катионита (принимают равным 8...24 ч); Н0 - общая жесткость исходной воды, мг-экв/кг, для Вологды Н0=3 мг-экв/кг; Е - объемная способность катионита, г-экв/м3 (для сульфоугля Е=280...350г-экв/м3. Примем =10 ч., Е=300 г-экв/м3

Расчетный расход исходной воды [стр. 136]:


 (6.2)

где 4,5 - расход воды на регенирацию 1 м3 катионита, м3; - расход исходной воды, м3/ч. Для водогрейной котельной он равен количеству воды, подаваемой подпиточным насосом =Qпп.н.

Определим расчетный расход исходной воды (6.2):

 ,м3/ч

Объем катионита (6.1):

 ,м3

Расчетная площадь поперечного сечения одного фильтра [стр. 136]:

 (6.3)

где h - высота загрузки катионита в фильтре, равная 2...3 м; n - число рабочих фильтров (1..3).

Примем высоту загрузки h=2 м, а количество рабочих фильтров n=1.

 ,м2

По таблице [таб. 21] подбираем фильтры с площадью поперечного сечения F, близкой к расчетной Fр (с запасом в сторону увеличения). Дополнительно к выбранному количеству фильтров устанавливают один резервный. В котельной устанавливаем два фильтра с площадью поперечного сечения 0,76 м2 и диаметром 1000 мм.

Далее определяем фактический межрегенерационный период  (ч) и число регенерации каждого фильтра в сутки nр [ стр. 136]:

,

 (6.4)

где F - площадь поперечного сечения выбранного фильтра, м2; 1,5 - продолжительность процесса регенерации, ч.

 ч

Для регенерации натрий-катионитовых фильтров используют раствор поваренной соли NaCl (6...8%). Расход соли (кг) на одну регенерацию фильтра определяют по формуле [ стр. 137]:

 (6.5)

где а - удельный расход поваренной соли, равный 200 г/(г*экв).

 кг


Суточный расход соли по всем фильтрам [стр. 137]:

 (6.6)

 кг

Месячный расход соли по всем фильрам:

 т

В крупных котельных (>3 т) поваренная соль хранится в железобетонных резервуарах в виде крепкого раствора (26 %), который насосом подаётся в фильтр раствора соли, а затем в бак для разбавления водой до требуемой кондиции.

Деаэрация (дегазация) питательной и подпиточной воды позволяет снизить содержание в ней агрессивных газов - кислорода и углекислоты. В водогрейных котельных используют деаэдораторы, работающие под вакуумом (0,02...0,03 Мпа), соответствующим температуре кипения воды 60...700С.

7. Составление тепловой схемы котельной. Компоновка котельной

Тепловая схема иллюстрирует взаимосвязь между отдельными элементами оборудования котельной и отображает тепловые процессы связанные с трансформацией теплоносителя и исходной воды.

Тепловая схема котельной представлена на чертеже.

Вода из обратной магистрали поступает во всасывающий коллектор сетевых насосов СН. Сюда же насосами ПН подается подпиточная вода в количестве Qпп=Qпп.н. Исходная вода для подпитки сети поступает из водопровода, проходит через подогреватель 6, фильтры химводоочистки 4, подогреватель химочищеной воды 3 и вакуумный деаэратор 2. В этом деаэраторе поддерживается вакуум 0,03 МПа за счет отсасывания из колонки деаэратора паровоздушной смеси водоструйным эжектором 1. Часть воды Qпер после сетевых насосов перепускается в обвод котлов 5 и смешивается с водой, нагретой в котлах, регулируя температуру в подающей магистрали на уровне, соответсвующем температурному графику сети.

Для поддержания температуры воды на входе в котел tвх на уровне, исключающем выпадение конденсата из дымовых газов на хвостовых поверхностях нагрева котла, часть нагретой воды в количестве Qрец рециркуляционным насосом РН возвращается в напорный коллектор сетевых насосов. Теплота этой воды используется также для нагрева добавочной воды в водоподогревателях 6 и 3.

При расчете тепловой схемы водогрейной котельной определяем температуры воды на входе и выходе из котла и линии рециркуляции, а также расходы воды через котел, в линии перепуска и в линии рециркуляции.

Расчет тепловой схемы будем вести в следующем порядке:

1. Температуру воды перед сетевыми насосами tсм определяем из уравнения теплового баланса точки смешения А [стр. 139]:

 , (7.1)

где Q0=Qп - Qпп - расход воды в обратной магистрали, м3/ч;  - плотность смешаной воды, принимают ; tпп=60...700С - температура подпиточной воды, принимается равной температуре горячей воды, разбираемой потребителями непосредственно из сети; ср=4,19 кДж/(кг*0С).

Выберем tпп=700С

Q0=51-9,16=41,84 м3/ч

 ,0С

,0С

2. Расход воды на перепуск Qпер по линии обвода котла находим из уравнения теплового баланса при смешении потоков в точке Б [стр. 139]:

, (7.2)

где tвых - проектная температура воды за котлом (1150С); и  - плотность воды на выходе из котла и в подающей магистрали, кг/м3.

Выберем =945,3 кг/м3; =951,2 кг/м3.

,м3/ч

3. Расход воды в линии рециркуляции Qрец для предварительно принятого значения tрец перед поступлением воды в напорный коллектор сетевых насосов определяют по формуле [стр. 139]:

 , (7.3)

где  и  - плотность воды рециркулируемой (для принятого значения tрец и добавочной (при температуре tх) ,кг/м3;  - КПД подогревателя (0,97...0,98); Qдоб - расход добавочной воды с учетом потерь в тепловой схеме самой котельной (Qдоб=1,05Qпп), м3/ч; tг - температура воды, подаваемй в деаэдоратор 700С; tх - температура холодной воды 50С.


Выберем =0,98

 , м3/ч

=1000 кг/м3 .  кг/м3 . tрец=630С

 , м3/ч

4. Температура воды на входе в котел tвх определяется из уравнения теплового баланса точки смешения В [стр. 140]:

, (7.4)

Температура tвх должна быть не менее 650С, если топливо - газ.

 , 0С

 , 0С

5. Расход воды через котлы Qк (м3/ч) с учетом необходимого подогрева добавочной воды [стр. 140]:

 (7.5)

где  - плотность воды при температуре tвых , кг/м3.

Полученное значение проверим подставив в выражение [стр. 140]:


 (7.6)

 м3/ч

 м3/ч

Компоновка котельной.

Так как Вологда находится в климатической зоне с расчетной зимней температурой ниже -300С, то котельные в этой зоне строят закрытыми, в которых все оборудование размещается внутри здания. Оборудование котельной компонуют таким образом, чтобы здание ее можно было построить из унифицированных сборных конструкций. одна торцевая стена должна быть свободной на случай расширения котельной.

При размещении оборудования соблюдаем следующие требования:

Для котлов, работающих на газе или мазуте, минимальное расстояние от стены до горелочных устройств 1м. Проходы между котлами, котлами и стенами котельной оставляют равным не менее 1м, а между котлами и боковой обдувкой газоходов - 1,5м. Чугунные котлы с целью сокращения длинны котельной устанавливают попарно в общей обмуровке. Просвет между верхней отметкой котлов и нижними частями конструкций покрытия здания должен быть не менее 2м. Компоновка котельной приведена на чертеже.

8. Технико-экономические показатели работы котельной

Работа котельной оценивается ее технико-экономическими показателями.

1. Часовой расход топлива (кг/ч) [стр. 146]:


 (8.1)

где q - удельная теплота сгорания топлива,36600 кДж/кг;  - КПД котлоагрегата. =0,8 [прил.15]:

 ,кг/ч

2. Часовой расход условного топлива (кг/ч) [стр. 146]:

 (8.2)

 кг/ч

3. Годовой расход топлива (т. или тыс. м3 [стр. 146]:

 (8.3)

где Qгод - годовой расход тепла, ГДж/год.

 , т.

4. Годовой расход условного топлива т. [стр. 147];


 (8.4)

 ,т.

5. Удельный расход топлива т/ГДж [стр. 147];

 (8.5)

 , т/ГДж

6. Удельный расход условного топлива т/ГДж [стр. 147];

 (8.6)

 , т/ ГДж

7. Коэффициент использования установленной мощности котельной [стр. 147]:

 (8.7)

где Фуст - суммарная тепловая мощность котлов, установленных в котельной, МВт; 8760 - число часов в году.

 


Используемая литература

1. А. А. Захаров Практикум по применению теплоты в сельском хозяйстве. - М. Агропромиздат 1985.

2. СНиП 41-02-2003 "Тепловые сети. Нормы проектирования"

3. Кирсанова. Т. А. "Гидравлика. Расчет насосной установки" (методические указания по выполнению расчетно-графической работы для студентов инженерных специальностей).-Кострома:КГСХА,2007.-21 с.

4. А. П. Баскаков "Теплотехника".-М.:Энергоатомиздат,1991.

5. Б. Х. Драганов "Курсовое проектирование по теплотехнике и применению теплоты в сельском хозяйстве"-М.:Агромпромиздат,1991.


Страницы: 1, 2


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.