скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыУчебное пособие: Автоматизация технологических процессов и производств

Например, закон Пуассона определяет распределение числа m случайного события за время t. Используется для определения вероятности того, что в сложном устройстве за время t произой­дет п отказов.

Экспоненциальный закон применяется для анализа сложных изделий, прошедших период приработки, а также для систем, ра­ботающих в тяжелых условиях под воздействием механических и климатических нагрузок. Типовые элементы радиоэлектроники аппаратуры подчиняется экспоненциальному закону распределения времени отказов в области внезапных отказов с l -кривой (рис. 2.2). Вероятностные характеристики отказов определяются формулами:

    (2.9)

Для экспоненциального закона Тср=0=1/l и удовлетворяются начальные условия Р(0)=1; Q(0)=0, т. е. отчет времени t начинается с момента выяснения исправности изделия.

Графики изменения показателей надежности при экспоненциальном распределении представлены на рис. 2.2.


Рис. 2.2. Показатели надежности при экспоненциальном (А) и нормальном (Б) законе распределения времени безотказной работы.

Основным характерным свойством экспоненциального распределения является то, что вероятность безотказной работы системы на любом интервале времени не зависит от длины этого интервала и не зависит от времени, предшествующей работы системы, т.е. от ее «возраста». 

Так как для экспоненциального распределения характерно постоянство интенсивности отказов во времени, то область применения этого закона – системы и элементы, где можно не учитывать ни период приработки, и участок старения и износа (например, многие средства вычислительной техники и регулирования).

 Нормальный закон распределения времени исправной работы изделия применяется дли области И l-кривой  (рис. 2.1). 3акон применяется, когда отказы системы зависят от большого числа однородных по своему влиянию факторов  в процессах износа, старения.  Отчет времени t при нормальном законе ведут с начала эксплуатации системы. Интенсивность отказов монотонно возрастает:

;                   (2.10)

 где s - среднеквадратичное отклонение времени безотказной работы системы.

Графики изменения показателей надежности при нормальном распределении представлены на рис. 2.2.

Нормальное распределение, в принципе, описывает поведение случайных величин в диапазоне от (-¥ ; +¥), но так как наработка до отказа является неотрицательной величиной, то используют усеченное нормальное распределение.

Распределение Вейбулла-Гнеденко применяется для описания надежности ряда электронных и механических технических средств, включая период приработки. Это двухпараметрическое распределение, где параметр k определяет вид плотности распределения, m – его масштаб. Так, при k=1 распределение Вейбулла совпадает с экспоненциальным, когда интенсивность отказов постоянна; при k.>1 интенсивность отказов возрастет; при k<1 интенсивность отказов убывает. Функция надежности при распределении Вейбулла имеет вид:

;                                (2.11)

Рекомендуемая литература для дополнительного чтения:

1. Балакирев В.С., Бадеников В.Я. Надежность технических и программных средств автоматизации.  Учеб. пособие для ВУЗов. – Ангарск.: Ангарский технологический институт, 1994, - 64 с.

2. Ястребенецкий М.А., Иванова Г.М. Надежность АСУТП. Учеб. пособие для ВУЗов. – М.: Энергоатомиздат, 1989. – 264 с.

3. Олссон Г. Цифровые системы автоматизации и управления. – М.:

4. Курсовое и дипломное проектирование по автоматизации производственных процессов. Учеб. пособие для ВУЗов. / под ред. И.К. Петрова. – М.: Высшая школа, 1986. – 350 с.


Лекция 3 ПОКАЗАТЕЛИ НАДЕЖНОСТИ ВОССТАНАВЛИВАЕМЫХ СИСТЕМ

После каждого отказа восстанавливаемой системы следует ее восстановление, проводимое заменой отказавшего элемента на идентичный работоспособный или проведением ремонтных операций. Так же, как и наработка до первого отказа у невосстанавливаемых системы, моменты наступления отказов восстанавливаемой системы являются случайными. Также случайной является и продолжительность работ по проведению восстановления, но время восстановления, как правило, значительно меньше времени между отказами, поэтому им пренебрегают. На рис. 3.1 представлен график функционирования восстанавливаемой системы (элемента).


Рис. 3.1  К определению понятия потока отказов.

t1; t2; tn –  моменты времени, в течение которых происходит отказ и восстановление.

k1; k2; kn – наработки между отказами.

Последовательность отказов, происходящих один за другим в случайные моменты времени, носит название потока отказов. Понятие потока отказов является одним из основных при рассмотрении систем с восстановлением. Поток отказов задается двумя способами: первый способ заключается в изучении некоторого дискретного случайного процесса, заданного числом отказов на промежутке времени (0,t); второй способ, заключается в изучении последовательности непрерывных случайных наработок между отказами. В том и другом случае пренебрегают продолжительность восстановления системы, а поток отказов называют простейшим.

Простейший поток обладает свойствами стационарности, ординарности и отсутствия последствий.

Выполнение требования стационарности означает, что вероятностные характеристики потока не зависят от времени. Поток отказов называют потоком без последствий, если для любого набора непересекающихся промежутков времени число отказов на этих промежутках представляют собой взаимно независимые случайные величины. Ординарность означает практическую невозможность возникновения двух или более отказов одновременно, т.е. на одном промежутке времени.

У простейшего потока вероятность возникновения n отказов на отрезке времени длиной t определяется распределением Пуассона:

;      (3.1)

Вероятность отсутствия отказов на интервале времени длиной t равна вероятности события, заключающегося в том, что время Т между отказами больше, чем t:

P{T>t}=e-wt;                   (3.2)

где   w - параметр потока отказов;

Параметр потока отказов w(t) -это отношение числа отказов системы на некотором малом отрезке времени к значению этого отрезка.

Статистическая формула:               (3.3)

где N-общее количество элементов; ni(t)- число отказов  i – ого элемента на интервале времени (0; t).

Для потока, удовлетворяющего требованию стационарности, параметр потока отказов является постоянной величиной и не зависит от времени.

Одновременные отказы нескольких элементов могут возникать из-за изменения условий эксплуатации сверх допустимых пределов. Но вследствие того, что надежность системы рассчитывают по установившемся условиям эксплуатации, то потоки отказов модно принимать ординарными. Нестационарность может иметь место из-за наличия периода приработки после пуска системы. Эта же причина может  привести к несоблюдению свойства последствия. Последствие может иметь место из-за недостаточного качества восстановления, когда свойства системы не полностью регенерируются после отказа, а также  в ситуации, когда отказ одного элемента вызывает ухудшение условий работы других.

В соответствии с двумя способами задания  потока отказов для восстанавливаемых систем модно применять различные показатели надежности и безотказности.

При задании потока отказов как дискретного случайного процесса – числа отказов на интервале времени (0,t) показателем безотказности является параметр потока отказов, определяемый соотношением (3.3).

При задании потока отказов как последовательности случайных величин (наработок) между отказами задаются показателями безотказности, ремонтопригодности, долговечности и комплексными показателями надежности. Показателем безотказности является средняя наработка на отказ.

Наработка на отказ (среднее время между соседними отказами) определяется по статистическим данным об отказах для одного устройства по формуле:

;                      (3.4)

где п — число отказов устройства за время наблюдения; ti — время исправной работы устройства между (i1)-м и i-м отказами. При простейшем потоке отказов параметр потока отказов является обратной величиной наработке до отказа.

Термин наработка определяет продолжительность или объем работы устройства. Выбор тех или иных показателей надежности зависит от того, насколько точно требуется   определить    надежность разрабатываемых   технических  средств автоматизации.

К показателям ремонтопригодности относятся вероятность восстановления работоспособного состояния за заданное время и среднее время восстановления.

Вероятность восстановления работоспособного состояния определяется как вероятность того, что время восстановления окажется меньше некоторого заданного времени t1.

QВ(t1)= Вер{TВ<t1};      (3.5)

среднее время восстановления (ремонта) после отказа (опре­деляется по статистическим данным):

;                       (3.6)

Показателем долговечности системы является срок службы системы. Срок службы системы – это случайная величина, характеризующая    календарную продолжительность от начала эксплуатации системы до перехода ее в предельное состояние. Для некоторых систем показателем долговечности является установленный срок службы, который должна достигнуть данная система. В качестве случайной величины при рассмотрении долговечности может быть принят не только календарный срок службы системы, но и ее ресурс – наработка от начала эксплуатации до перехода в предельное состояние.

Комплексные показатели надежности отражают совместно безотказность и ремонтопригодность системы. К комплексным показателям относятся: коэффициент готовности, коэффициент оперативной готовности и коэффициент технического использования.

Коэффициент готовности kГ  - вероятность того, что система окажется работоспособной в произвольно выбранный момент времени в установившемся процессе эксплуатации. При отсутствии ограничений в обслуживании:

kг=tср*/( tср*+ tВ*)           (3.7)

Коэффициент готовности численно равен средней доле времени, в течение которого система пребывает в работоспособном состоянии.

Коэффициент оперативной готовности kОГ  - вероятность того, что система окажется работоспособной в произвольно выбранный момент времени в установившемся режиме эксплуатации и что, начиная с этого момента, система будет работать безотказно в течение заданного интервала времени t.

kОГ*=kГ P(t)                             (3.8)

При определении коэффициента готовности и коэффициента оперативной готовности из рассмотрения исключены планируемые периоды времени, в течение которых применение систем по назначению не предусматривается (например, интервалы планового технического обслуживания). Эти периоды времени учитываются коэффициентом технического использования:

kти =tср*/( tср*+ tВ* + tпроф*)      (3.9)

где tпроф*— среднее время профилактики, приходящееся на один отказ за рассматриваемый промежуток времени.

Рекомендуемая литература для дополнительного чтения:

1. Балакирев В.С., Бадеников В.Я. Надежность технических и программных средств автоматизации.  Учеб. пособие для ВУЗов. – Ангарск.: Ангарский технологический институт, 1994, - 64 с.

2. Ястребенецкий М.А., Иванова Г.М. Надежность АСУТП. Учеб. пособие для ВУЗов. – М.: Энергоатомиздат, 1989. – 264 с.

3. Олссон Г. Цифровые системы автоматизации и управления. – М.:

4. Курсовое и дипломное проектирование по автоматизации производственных процессов. Учеб. пособие для ВУЗов. / под ред. И.К. Петрова. – М.: Высшая школа, 1986. – 350 с.


Лекция 4 ПРИНЦИПЫ ОПИСАНИЯ НАДЕЖНОСТИ АСУ ТП. ОТКАЗЫ АВТОМАТИЧЕСКИХ СИСТЕМ

Автоматизированную систему управления, как и любую сложную систему, целесообразно рассматривать как совокупность элементов с определенной взаимосвязью между собой.   Выбор элементов в зависимости от способа декомпозиции АСУ ТП может быть различен. При декомпозиции по составу в качестве элементов могут быть приняты комплекс технических средств, информационное обеспечение (включающее в себя нормативно-справочную информацию, системы классификации и кодирования информации и др.) и организационное обеспечение (документы, регламентирующие действия персонала). Свойства информационного и организационного обеспечения влияют на надежности АСУ ТП косвенно, через функционирование технических средств, программного обеспечения и действия персонала, поэтому отдельно не учитываются. При функциональной декомпозиции АСУ ТП как многофункциональной системы в качестве элементов системы рассматриваются ее функции, в этом случае говорят об функциональной эффективности АСУ ТП. В общем случае АСУ ТП принято рассматривать как совокупность ТСА (технические средства автоматизации), ПО (программное обеспечение) и ОП (оперативный персонал).

Надежность комплекса технических средств оказывает наиболее существенное  влияние на надежность АСУ ТП, поэтому приближенно надежность АСУ ТП зачастую оценивают с учетом только комплекса технических средств.

Критерии отказов технических средств (ТСА) устанавливаются в соответствии с требованиями, указанными в стандартах, технических условиях или другой технической документации на эти ТСА. Поскольку большинство ТСА имеют общепромышленное назначение, то требования задаются безотносительно к тем системам, в которых эти ТСА функционируют. Критерии отказов ТСА при этом не зависят от характеристик управляемого объекта и требований к качеству управления.

Рассмотрим классификацию отказов комплекса технических средств системы.

Отказслучайное событие, заключающееся в нарушении работоспособности системы. Кроме того, отказ автоматической системы определяется как выход пара­метра за границы установленного допуска.

Рис. 4.1. К случайному процессу изменения пара­метра.

В эксплуатационных условиях изменение выходного параметра системы представляет случайную функцию. Если вы­ход параметра k за границу допуска является опасным, то графи­чески переход из исправного состояния прибора в неисправное, можно изобразить как пересечение случайной функцией одной из границ допуска а и или b (рис. 4.1).

При этом выход параметра за границу допуска может происходить либо скачком (график 1), либо в результате  постепенного  непрерывного  изменения параметра прибора (график 2).

Поэтому, если исходить из характера изменения параметра, целесообразно разделить отказы приборов и элементов на внезапные и посте­пенные. Такое деление удобно при расчете безотказности системы (приборов), поскольку внезапный отказ ее вызывается как отка­зом элементов принципиальной схемы, так и отказом конструктив­ных и вспомогательных элементов. Для большинства систем и при­боров постепенный отказ определяется лишь изменением парамет­ров принципиальной и кинематической схем.

При появлении внезапных отка­зов не резервированная система не может выполнять предназначае­мые функции, в то время как при постепенных отказах небольшие отклонения параметра за границу допусков обычно приводят не к отказу системы, а лишь к изменению ее эффективности (в зави­симости от величины отклонения параметра прибора за границу допуска).

При оценке безотказности системы, в слу­чае постепенных отказов, влияние величины отклонения параметра системы за границу допуска можно харак­теризовать эффективностью параметра системы.

При таком делении отказов элементов на внезапные и постепенные можно считать, что:

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.