скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Модернизация подвески автомобиля ЗАЗ1102 Таврия

Дипломная работа: Модернизация подвески автомобиля ЗАЗ1102 Таврия

СОДЕРЖАНИЕ

Введение и постановка задачи

Условные обозначения

1 Требования к подвеске

2 Подвеска на направляющих пружинах и амортизационных стойках

2.1 Преимущества и недостатки пружинных стоек

2.2 Кинематические свойства

2.3 Силы и трение

3 Силы в пятне контакта колеса с дорогой

3.1 Определение жесткости шин ЗАЗ – 1102 «Таврия»

3.2 Определение сил и коэффициентов

4 Определение статических нагрузок в пружине и шариках

5 Расчеты на прочность

5.1 Основные теоретические положения расчетов на прочность

5.1.1 Определение допускаемых напряжений

5.1.2 Напряжения при изгибе

5.2 Расчет на выносливость и сопротивление усталости

5.2.1 Определение верхних значений сил длительного действия

5.2.2 Определение нижних значений сил длительного действия

5.2.3 Определение сил в направляющей и на поршне амортизатора при верхних значениях сил длительного действия

5.2.4 Определение сил в направляющей и на поршне амортизатора при нижних значениях сил длительного действия

5.2.5 Преобразование знакопеременной нагрузки

5.2.6 Определение сил, действующих на резиновые шарниры рычага

5.2.7 Определение напряжений и деформаций резиновых втулок-шарниров

5.3 Расчет на прочность

5.3.1 Кратковременно действующие силы

5.3.2 Силы, возникающие при движении по дороге с выбоинами

5.3.3 Силы, возникающие при торможении

5.3.4 Силы, возникающие при преодолении железнодорожного переезда

5.3.5 Силы, действующие при полном ходе отбоя колеса

6 Подрессоривание передней оси

6.1 Вертикальные колебания, их действие на человека

6.2 Определение передаточных чисел

6.3 Построение кривой жесткости подвески

7 Расчет и проектирование стального упругого элемента

7.1 Пружинные стали и их свойства

7.2 Расчет винтовой пружины

8 Расчет характеристики амортизатора

9 Построение графика изменения колеи автомобиля в зависимости от хода колеса

10Охрана труда

10.1 Меры безопасности при эксплуатации автомобиля

10.2 Требования к рабочему месту водителя

10.3 Виброизоляция сиденья самоходной машины

10.4 Устойчивость легкового автомобиля

10.5 Противопожарная безопасность

Заключение

Список литературы


Введение и постановка задачи

Основными устройствами, защищающими автомобиль от динамических воздействий дороги и сводящими колебания и вибрации к приемлемому уровню, являются подвеска и шины.

Многолетний опыт показывает, что неровности дороги и вызываемые ими колебания кузова и колес автомобиля ведут, как правило, к ухудшению всех его эксплуатационно-технических качеств и к тем большему, чем хуже качество дороги.

Можно считать, что на дорогах с неровной поверхностью снижается производительность автомобиля вследствие уменьшения скоростей движения и увеличения простоев, возрастают расходы на техническое обслуживание и ремонты. Кроме этих прямых потерь есть и косвенные, вызванные, в частности, слабым использованием сети дорог с неровной поверхностью. Прямые и косвенные потери от эксплуатации различных автомобилей и автопоездов на дорогах с неровной поверхностью исчисляются значительными денежными суммами.

Есть два пути уменьшения этих потерь — строительство дорог с усовершенствованным покрытием и улучшение качества подвески. Оба направления дополняют друг друга, так как строительство дорог — процесс длительный и дорогостоящий. Кроме того, всегда требуется некоторое количество автомобилей повышенной и высокой проходимости, которым необходима совершенная подвеска.

Подвеской автомобиля называют совокупность устройств, связывающих колеса с рамой (кузовом) и предназначенных для уменьшения динамических нагрузок, передающихся автомобилю вследствие неровной поверхности дороги, а также обеспечивающих передачу всех видов сил и моментов, действующих между колесом и рамой (кузовом).

Разнообразные силы взаимодействия колеса и дороги можно свести к трем составляющим: вертикальной Z, продольной Х, поперечной или боковой У (рис.1). Передача этих сил и их моментов состоит из трех устройств: упругого, демпфирующего и направляющего.

Упругим устройством на подрессоренную массу передаются вертикальные силы, действующие со стороны дороги, уменьшаются динамические нагрузки и улучшается плавность хода.

Направляющее устройство — механизм, воспринимающий действующие на колесо продольные и боковые силы и их моменты. Кинематика направляющего устройства определяет характер перемещения колеса относительно несущей системы.

Демпфирующее устройство — предназначено для гашения колебаний кузова и колес путем преобразования энергии колебаний в тепловую и рассеивание ее в окружающую среду.

Кроме того задачи повышения плавности хода на автомобильном транспорте становятся актуальней потому как это связано не только с требованиями повышения ресурса динамически нагруженных узлов автомобиля, но и с причиной перемещения центра вопроса в область обеспечения высокой безопасности движения, комфортабельности водителя и пассажиров и защиты их от воздействия высокочастотных колебаний. Особенно это важно для легковых автомобилей, которые, как правило, эксплуатируются при более высоких скоростях, чем грузовые и значительно легче последних, а потому более полно воспринимают неровности дороги. Однако большая номенклатура существующих конструкций подвесок говорит об отсутствии, какой либо универсальной. Более того, зачастую, казалось бы, подходящая конструкция для конкретного типа автомобиля требует доработки, и переработки ввиду различного рода эксплуатационных факторов, морального старения, с учетом возможности дальнейшей модернизации, с целью повышения ресурса и уменьшения нагрузок на её детали и узлы. Последнее время распространение получают подвески с увеличенными ходами. Это способствует высокой плавности хода. Наиболее известной является подвеска на несущих пружинных стойках (типа «Макферсон»). При относительной простоте она позволяет приобрести массу положительных эффектов, о которых будет сказано ниже.

Целью настоящей работы является расчет силовых факторов подвески на направляющей пружинной стойке переднеприводного автомобиля ЗАЗ-1102 «Таврия» с введением изменений. А именно: смещения амортизатора относительно пружины на угол α=7º. Расчет основных геометрических параметров элементов и деталей, расчет их основных физических свойств, проведение кинематического и силового анализа, проверка адекватности используемой методики.


Условные обозначения

Силы, действующие в пятне контакта колеса с дорогой

F        – сила упругости;

LА          – сила тяги;

LВ          – тормозная сила;

NV1 h    – нагрузка от колеса (нормальная сила, равная половине допустимой нагрузки соответственно на переднюю или заднюю оси);

NV ′1h – нормальная нагрузка (вертикальная), действующая на кузов, в расчете соответственно на заднюю или переднюю оси;

± ∆N – колебания нагрузки на колесe;

± S1      – продолжительно действующая боковая сила;

± S2      – кратковременно действующая боковая сила;

U       – вес неподрессоренных частей, отнесенный к оси.

Нижние индексы

h        – задний;

v        – передний;

о        – верхний предел;

u        – нижний предел;

ℓ        – нагрузка продолжительного действия;

2        – при движении по железнодорожному переезду;

3, 4    – при движении по дороге с выбоинами;

5        – при торможении.

Моменты

Мbo    – верхнее значение длительно действующего изгибающего момента;

Мbu       – нижнее значение длительно действующего изгибающего момента;

Мbw      – изгибающий момент при чистом знакопеременном изгибе.

Расчеты на прочность (по ДИН 1350 и ДИН 50100)

αА          – соотношение напряжений;

αК          – коэффициент концентрации напряжений;

βК          – то же, обусловленный формат поверхности;

βN          – то же, обусловленный посадкой;

γ        – отношение предела текучести к временному сопротивлению;

δ        – удлинение;

υ        – запас прочности;

b1           – масштабный коэффициент, учитывающий влияние размеров;

b2           – масштабный коэффициент, учитывающий шероховатость обработанной поверхности;

σ        – нормальное напряжение;

τ        – касательное напряжение при срезе или кручении;

fw           – коэффициент, учитывающий материал.

Нижние индексы

а        – амплитудное значение действующих напряжений;

b        – напряжение при изгибе;

m       – среднее значение напряжений;

o        – верхнее значение предельных напряжений;

t         – напряжения при кручении;

u        – нижнее значение предельных напряжений;

доп.   – допускаемые напряжения;

А       – допускаемое амплитудное значение напряжений (на испытуемом образце);

В       – временное сопротивление.

Жесткость системы подрессоривания

С1          – жесткость шин при принятом для данного автомобиля давлении в шинах;

С2          – жесткость подвески кузова, приведенная к одному колесу, при равностороннем нагружении обеих (левой и правой) подвесок;

С2 А   – жесткость подвески кузова, приведенная к оси, при равностороннем нагружении обеих подвесок;

С3          – жесткость стабилизатора, приведенная к одному колесу, при разностороннем нагружении подвесок;

СF      – жесткость собственно упругого элемента, приведенная к месту его опоры;

CS      – жесткость стабилизатора, измеряемая на концах рычагов при разностороннем нагружении подвесок.

          Частота колебаний

nІ            – частота недемпфированных колебаний оси в вертикальном направлении, мин.

nІ D     – то же, демпфированных колебаний;

nІІ      – частота недемпфированных колебаний кузова в вертикальном направлении;

nІІ D      – то же, демпфированных колебаний.

Передаточные числа и числа витков пружин

if        – число рабочих витков;

ig       – общее число витков;

iw      – передаточное отношение при поперечно-угловом подрессоривании;

ix       – кинематическое передаточное число;

iy       – силовое передаточное число.


1 Требования к подвеске

Подвеска, являясь промежуточным звеном между кузовом автомобиля и дорогой, должна быть легкой и наряду с высокой комфортабельностью обеспечить максимальную безопасность движения. Для этого необходимы точная кинематика колес, легкость поворота управляемых колес, а также изоляция кузова от дорожных шумов и жесткого качения радиальных шин. Кроме того, надо учитывать, что подвеска передает на кузов силы, возникающие в пятне контакта колеса с дорогой, поэтому она должна быть прочной и долговечной (рис. 1). Наиболее характерными требованиями к подвеске являются:

1.         Обеспечение движения по неровным дорогам без ударов в ограничитель.

2.         Ограничение поперечного крена автомобиля.

3.         Обеспечение затухания колебаний кузова и колес.

4.         Постоянство колеи и углов установки колес.

5.         снижение массы неподрессоренных частей.

6.         Общие требования.

Детали, соединяющие опоры подшипника колеса с кузовом (рычаги, штанги и упругие элементы), должны удовлетворять этим требованиям. Применяемые шарниры должны легко поворачиваться, быть малоподатливыми и вместе с тем обеспечивать шумоизоляцию кузова. Рычаги должны передавать силы во всех направлениях, а также тяговые и тормозные моменты и быть при этом не слишком тяжелыми или дорогими. Упругие элементы при эффективном использовании материала должны быть простыми и компактными и допускать достаточный ход подвески.

Рис. 1 Силы, действующие в точке контакта колеса с дорогой (левое переднее колесо):

Fb сила сопротивления качению или тормозная сила;

Fn вертикальная сила;

Fs боковая сила. 

Подвеска автомобиля и демпфирование в ней должны обеспечить комфортабельность движения (плавность хода); безопасность движения и устойчивость на поворотах.

Свойства самой подвески зависят от различных параметров и взаимодействия отдельных деталей, т. е. от типа и жесткости упругих элементов, стабилизаторов, шарниров рычагов, амортизаторов и их соединения, массы осей, типа подвески двигателя, колесной базы, колеи и особенно от шин.

·           Тип и жесткость упругих элементов.

Мягкие пружины и большие хода подвески являются предпосылкой высокой плавности хода автомобиля, достаточной свободы продольных угловых колебаний кузова и хорошего держания, дороги шинами. Последнее условие необходимо и для обеспечения безопасности движения.

Если, например, колесо, нагруженное NV1 h = 2944 Н, попадает в выбоину глубиной 80 мм, то при мягкой подвеске с жесткостью упругого элемента С2 = 10 Н/мм в момент касания колесами дна выбоины остаточная сила

N′ = NV1 h - С2 f2 = 2944 – 10 х 80 = 2144 Н.

При жесткой («спортивной») подвеске с С2 = 20 Н/мм эта сила составила бы лишь 1344 Н. Более высокое значение остаточной силы означает лучшее сцепление с дорогой. Аналогичным образом можно рассмотреть переезд дорожной неровности высотой 40 мм. При более жесткой подвеске увеличение силы, передаваемой подвеской на кузов в виде удара, составит без учета демпфирования ∆N = 800 Н. При мягкой подвеске это увеличение нагрузки на колесо будет меньшим. Недостатком мягкой подвески будет больший крен кузова на поворотах и связанное с этим уменьшение способности шин воспринимать боковые силы. При независимой подвеске колеса наклоняются вместе с кузовом. Наружное по отношению к центру поворота колесо воспринимает основную часть боковых сил и приобретает положительный угол развала. В результате этого наклон шины увеличивается.

·           Стабилизаторы.

Стремление автомобиля к крену может быть ослаблено благодаря применению стабилизаторов на обеих осях или только на передней. Недостатком в этом случае является большая жесткость подвески при воздействии неровностей с одной стороны автомобиля, когда уменьшается способность подвески к гашению ударов, создаваемых булыжной мостовой и неровностями дорожного покрытия.

·           Шарниры рычагов.

К повышению жесткости подвески могут приводить также слишком жесткие шарниры рычагов направляющего устройства. Если речь идет о подшипниках скольжения, то в точках изменения направления колебаний необходимо учитывать появление силы сопротивления, которую следует рассматривать одновременно с повышением демпфирующего эффекта. Если же в качестве шарниров использованы резиновые элементы, запрессованные между внутренней и наружной втулками, то при повороте рычага в предварительно напряженной резине возникают напряжения сдвига, что приводит к увеличению общей жесткости подвески.

·           Амортизаторы и их соединения.

Демпфирование оказывает на свойства подвески автомобиля аналогичное воздействие. «Жесткие» амортизаторы способствуют хорошему контакту колес с дорогой, но ухудшают плавность хода. Более «мягкие» амортизаторы делают движение более комфортабельным, но не способствуют повышению безопасности. Аналогичным образом слишком мягкие элементы соединения амортизаторов, хотя и способствуют изоляции от дорожного шума и обеспечивают необходимую свободу углового перемещения, но они приводят к запаздыванию срабатывания амортизатора, тем самым уменьшают его эффективность.

·           Масса осей.

Для демпфирования колебаний легкой оси (т. е. для уменьшения колебаний колес) в большинстве случаев достаточно той регулировки амортизатора, которая предусмотрена для демпфирования колебаний кузова. Для тяжелого ведущего неразрезного моста, напротив, требуются более высокие силы демпфирования, которые в свою очередь снижают плавность хода.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.