скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКонтрольная работа: Основы проектирования и эксплуатации технологического оборудования транспортных предприятий

Контрольная работа: Основы проектирования и эксплуатации технологического оборудования транспортных предприятий

Министерство образования и науки Украины

Кременчугский университет экономики информационных

технологий и управления

Кафедра «Автомобили и автомобильное хозяйство»

Контрольная работа

По дисциплине

Основы проектирования и эксплуатации технологического оборудования транспортных предприятий

Кременчуг 2010г


Завдання

Гідравлічний розрахунок установок для миття автомобілів

Пояснити призначення всіх елементів пересувної платформи

Навести механічну характеристику асинхронного електричного двигуна трифазного струму

Пояснити принцип роботи стенда для випробувань коробок передач з електромагнітним навантажувачем

Будова пристроїв для перевірки нжекторів бензинових двигунів

Будова та принцип обладнання для визначення гальмівних якостей автомобілів

Будова знімачів для розбирання вузла з`єднань із гарантованим натягом

Навести методику аналізу оснащеност підприємства технологічним обладнанням


Гидравлический расчет установок для мойки автомобилей

Мойка автомобилей - механический, физико-химический и биологический метод удаления загрязнений путем приложения к ним сил воздействия, преобразование загрязнений за счет молекулярных превращений, растворения, создания эмульсий и других физико-химических процессов, разрушение загрязнений микроорганизмами.

Последовательность расчета моечной установки

1. Задавшись крупностью смываемых частиц (толщиной пограничного слоя) рассчитать давление воды в насадке.

2. Рассчитать силу гидродинамического давления струи и проверить выполнение условия удаления загрязнений.

3. Определить размер зоны действия касательных сил и число распылителей.

4. Рассчитать расход воды через установку. Если есть рамки предварительного смачивания и ополаскивания, рассчитывается дополнительных расход воды через эти рамки.

5. Выбрать гидравлическую схему установки и рассчитать потери напора.

6. Определить мощность электродвигателя привода насоса для подачи воды в установку.

7. При необходимости выполнить расчет привода щеток установки.

8. Произвести расчет основных параметров очистных сооружений.

Гидравлический расчет насосной установки

Основная расчетная схема изображена на рис.1.17.

Исходя из уравнения Бернулли, потери давления на преодоление гидравличе-

ских сопротивлений при наличии одного транзитного расхода

где  - сумма коэффициентов местных сопротивлений по длине трубопровода на участке длиной l с диаметром трубы d ; λm - коэффициент потерь на трение.

С достаточной для практических расчетов точностью можно считать, что для сетки (см.рис.1.7) ξ = 9,7, для всасывающего клапана - 7,0, для задвижки - 5,5.

Коэффициент сопротивления отверстия и насадка

Для водопроводных стальных труб

При наличии путевого расхода (рис.1.18)

В соответствии с рис.1.17 участки I, II, III, IV - пропускают транзитный расход, а на участках V и VI имеется только путевой расход.

Суммарные потери давления получаются сложением потерь на отдельных участках, если они работают последовательно (рис.1.19,а).

Если участки работают параллельно (рис.1.19,б), то определяют расход в каждом из участков и на основании этого рассчитывают потери давления.

При параллельном соединении одинаковых трубопроводов

где Qi - расход через один из параллельных трубопроводов, м3/с; i – количество параллельных участков; Δ PΣ - суммарные потери давления в разветвленном трубопроводе, МПа; Δ Pi - потери давления в одном из параллельных трубопроводов, МПа.

Выбор насоса производится с учетом его совместной работы с трубопроводом.

Давление насоса проектируемой насосной установки

где  - суммарные потери давления в трубопроводах установки, МПа;

- геометрическое давление, МПа.

Здесь  - геометрический напор, м.

Далее, руководствуясь давлением Р и производительностью Q, по каталогу выбирают марку насоса.

Мощность на привод насоса

где  - К.П.Д. насоса; - К.П.Д. электродвигателя.

Насос, во избежание появления кавитации, лучше устанавливать как можно ниже по отношению к уровню воды в заборном колодце. Если высота насоса над уровнем воды более 3 м, необходимо производить дополнительный расчет на возможность кавитации.


Объяснить назначение всех элементов передвижной эстакады

Мобильная рампа (передвижная погрузочная эстакада) предназначена для погрузки - разгрузки вагонов, машин на тех складах, площадках где нет стационарных мест для погрузки-загрузки и работы производятся с "земли".

Позволяет позволяет проводить работу различной техникой - погрузчиками,мини-погрузчиками штабелерами, гидравлическими тележками и другой техники.

Конструктивные элементы

К числу основных конструктивных элементов передвижной мобильной рампы относятся:

·   каркас из несущих балок, расположенных по бокам;

·   въезд, изготовленный из стальных листов с «чечевичным» рифлением и оснащенный ребрами жесткости;

·   аппарель наклонная платформа, которая также производится с применением рифленого металлопроката (что обеспечивает оптимальное сцепление колес транспорта с поверхностью эстакады);

·   телескопические опоры и шарнирное соединение с эстакадой позволяют настраивать необходимую высоту эстакады.

·   Для удобства перемещения эстакада сделана на съемных шарнирах и оборудованы транспортировочными устройствами.

Погрузчик на жесткой сцепке транспортирует мобильную рампу к автомобилю. Оператор настраивает необходимую высоту устройства, чтобы наклонная поверхность образовывала мост между землей и кузовом грузовика.

Регулировка такой системы может производиться посредством электрогидравлического или ручного привода. После установки необходимой высоты автопогрузчик начинает работу, перемещаясь по поверхности мобильной эстакады в кузов автомобиля.

Механическая характеристика асинхронного электродвигателя трехфазного напряжения

Асинхронный двигатель - представляет собой машину переменного тока, состоящую из статора с тремя обмотками, магнитные поля которых сдвинуты в пространстве на 120° и при подаче трехфазного напряжения образуют вращающееся магнитное поле в магнитной цепи машины, и из ротора с короткозамкнутой обмоткой, чаще называемой «беличье колесо».

Механическая характеристика асинхронного двигателя - зависимость частоты вращения от вращающего момента. При расчетах под механической характеристикой понимается функция M(S), где

-

скольжение ротора, а M-вращающий момент.

Формула Клосса

При аналитическом описании механической характеристики используется формула Клосса:


(1)

Она учитывает, что

Сопротивление обмотки ротора современных АД, имеющие колбообразную форму или выполненные в виде двойной беличьей клетки имеют сопротивления (r2′ и xк), зависящие от скольжения. Если пренебречь r1, малым по сравнению с xк, то можно записать:

,

где Mmax-максимальный вращающий момент на всей механической характеристике (табличное значение), а  и - некоторые функции скольжения, пропорциональные сопротивлениям ротора. Была поставлена задача определить форму  и .

Аппроксимирующая функция

Достаточно точного математического описания зависимости сопротивлений ротора от скольжения на сегодняшний момент не существует. Поэтому вид  и  выбирался экспериментальным путем, а коэффициенты рассчитывались численно. Были выбраны следующие функции

(при этом ),

Согласно принципу обратимости электрических машин, асинхронный двигатель может работать как в двигательном, так и в генераторном режимах.

Трёхфазный двигатель электродвигатель, который конструктивно предназначен для питания от трехфазной сети переменного тока.

Принцип работы трёхфазного двигателя был разработан Доливо-Добровольским.

В двигательном режиме при подключении двигателя к трехфазной сети переменного тока в обмотке статора образуется вращающееся магнитное поле, под действием которого в короткозамкнутой обмотке ротора наводятся токи, образующие электромагнитный момент вращения, стремящийся провернуть ротор вокруг его оси.

Ротор преодолевает момент нагрузки на валу и начинает вращаться, достигая подсинхронной скорости (она же и будет номинальной с учетом момента нагрузки на валу двигателя).

В генераторном режиме происходят обратные явления, приводной двигатель раскручивает ротор до подсинхронной скорости, при этом остаточное магнитное поле ротора, пронизывая обмотки статора, наводит в них ЭДС индукции, под действием которой на выводах обмотки появится напряжение.

Для смены направления вращения трехфазного асинхронного двигателя необходимо поменять местами две фазы из трех в месте подключения питания к двигателю.

Механическая характеристика асинхронного двигателя является "жёсткой", то есть при незначительном уменьшении оборотов крутящий момент двигателя возрастает очень сильно - "стремится поддерживать номинальные обороты". Это хорошее свойство для приводов, требующих поддержания заданной скорости независимо от нагрузки (транспортёры, погрузчики, подъёмники, вентиляторы).

Электроэнергия, подводимая к электродвигателю в двигательном режиме, потребляется (частью, обозначаемой "косинус фи") на совершение полезной работы и нагрев двигателя, остальная часть возвращается в сеть как индуктивная нагрузка. "Косинус фи" зависит от нагрузки на двигатель, на холостом ходу он близок к нулю. В характеристике двигателя указывается "косинус фи" для номинальной нагрузки.

Генераторный режим возникает при принудительном увеличении оборотов выше "идеального холостого хода". При этом магнитное поле ротора наводит ЭДС в обмотках статора и фазное напряжение на обмотках статора не падает, а увеличивается.

Принцип работы стенда для испытаний коробок передач с электромагнитной нагрузкой

Стенд для испытаний – необходим для приработки и испытания отремонтированного агрегата, подготовка его к восприятию эксплуатационных нагрузок, выявление дефектов, связанных с качеством ремонта деталей и сборки агрегатов, а также проверка соответствия характеристик агрегатов требованиям нормативно-технической документации.

Контрольные испытания проходят все отремонтированные коробки передач после приработки. В ходе контрольных испытаний (они, как правило, совмещены с приработкой) проверяется, нет ли резких стуков и шумов, выбрасывания или течи масла. Приемо-сдаточные испытания проходят все отремонтированные коробки передач после приработки. Целью приемо-сдаточных испытаний является оценка качества сборки. Если в процессе приработки и испытания обнаруживают неполадки, то двигатель отправляют на устранение дефектов, а затем повторно испытывают.

Электротормозной стенд: 1— указатель электротахометра; 2 — термометр для воды; 3 — циферблат весового механизма; 4 манометр; 5 — термометр для масла; 6 — электрическая балансирная машина АКБ; 7 муфта; 8 — редуктор; 9 — плита; 10 — рама.

Целью испытаний коробок передач является проверка качества восстановления отдельных деталей и в целом качества сборки. Испытания проводят как под нагрузкой, так и без нагрузки.

Сначала испытывают без нагрузки на всех передачах при частоте вращения первичного вала 900... 1000 мин-1, затем при 1400... 1500 мин-1. Продолжительность испытания определяется временем, необходимым для прослушивания работы коробки передач и выявления дефектов. При тех же частотах испытывают на каждой передаче по 2...3 мин и под нагрузкой 100... 150 Нм на первичном валу. В ходе испытаний проверяют, нет ли подтеканий масла, самопроизвольного выключения передач, повышенного шума, ударов, стуков. Для испытания коробок передач применяют стенды различной конструкции: электромагнитные, с асинхронным электродвигателем, с нагрузкой внутренними силами и с гидравлическим тормозом.

Устройство приспособлений для проверки инжекторов бензиновых двигателей

Инжекторная система подачи топлива — система подачи топлива, устанавливаемая на современных бензиновых двигателях. Эта система подачи топлива постепенно вытесняет карбюраторную систему подачи топлива. Двигатели, имеющие такую систему, называют инжекторными двигателями.

Устройство

В инжекторной системе впрыск топлива в воздушный поток осуществляется специальными форсунками — инжекторами. Инжекторные системы классифицируются следующим образом.

Положение и количество

·   Моновпрыск или центральный впрыск — одна форсунка на все цилиндры, расположенная на месте карбюратора (во впускном коллекторе). В современных двигателях не встречается.

·   Распределённый впрыск — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе. Различают несколько типов распределённого впрыска:

o Одновременный — все форсунки открываются одновременно.

o Попарно-параллельный — форсунки открываются парами, причём одна форсунка открывается непосредственно перед циклом впуска, а вторая перед тактом выпуска. В связи с тем, что за попадание топливо-воздушной смеси в цилиндры отвечают клапаны, это не оказывает сильного влияния. В современных моторах используется фазированный впрыск, попарно-параллельный используется только в момент запуска двигателя и в аварийном режиме при поломке Датчика Положения Распределительного Вала ДПРВ (Фазы).

o Фазированный впрыск — каждая форсунка управляется отдельно, и открывается непосредственно перед тактом впуска.

o Прямой впрыск — форсунки расположены непосредственно возле цилиндров и впрыск топлива происходит непосредственно в него.

Метод управления

·   Механический;

·   Электронный — решение о времени и длительности открытия форсунок принимает микроконтроллер, основываясь на данных, поступающих от датчиков.

Пример работы

В контроллер (ВАЗ-2111) поступает следующая информация.

·   о положении и частоте вращения коленчатого вала,

·   о массовом расходе воздуха двигателем,

·   о температуре охлаждающей жидкости,

·   о положении дроссельной заслонки,

·   о содержании кислорода в отработавших газах (в системе с обратной связью),

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.