скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Структура аффинного пространства над телом

В частности, аффинный репер  является базисом содержащимся в

Векторная интерпретация аффинных отображений.

Мы начнем с установления одного общего результата, независимого от теории векторных продолжений

Предложение 7.2. Пусть , - два векторных пространства над одним и тем же телом и  (соответственно ) – аффинная гиперплоскость в (соотв. ), не проходящая через начало; обозначим (соответственно ) векторную гиперплоскость, параллельную  (соответственно ).

А) Если  - линейное отображение, такое, что , то ограничение  на  есть аффинное отображение  в , линейная часть которого есть ограничение  на .

Б) обратно, если  - аффинное отображение, то существует единственное линейное отображение , ограничения которого на  совпадает с .

Доказательство.

А) Если  линейно и , то для любых точек из  имеем и . Ограничения  на  аффинно с линейной частью , .

Б) Обратно, пусть- аффинное отображение. Фиксируем точку  в  и обозначим через  (соответственно ) векторную прямую в (соответственно ), порожденную  (соответственно ) (рис 4). Тогда  , , и искомое линейное отображение должно удовлетворять следующим двум условиям:

1. ,

2. Ограничения  на  равно линейной части .

Но существует единственное линейное отображение  из  в , удовлетворяющее этим условиям ( определено своими ограничениями на дополнительные ВПП  и  пространства ); тогда ограничение  на  - есть аффинное отображение с той же линейной частью, что и , и принимающее в  то же значение, что и , а тем самым равное ,  откуда вытекает доказываемый результат.

      Существует, следовательно, биективное соответствие между аффинными отображениями  в  и линейными отображениями  в , удовлетворяющими условию .

С другой стороны, если , и , это соответствие сохраняет композицию отображений (композиция ограничений двух отображений совпадает с ограничением их композиции).

                                            Рис.4

Наконец, если  - автоморфизм  и  - аффинная гиперплоскость в , то включение  влечет равенства . В самом деле,  есть аффинная гиперплоскость в , и достаточно применить следствие теоремы II 6.2, вернувшись к векторному случаю путем замены начала в .

            Т.о. мы можем сформулировать

Предложение 7.3. Пусть  - векторное пространство,  - аффинная гиперплоскость в , не проходящая через начало.  Существует изоморфизм группы аффинных биекций  на стабилизаторе  в  (подгруппу , состоящую из изоморфизмов , для которых ).

            Эти результаты применимы, в частности, к случаю, когда, ,  - векторные продолжения аффинных пространств , , а ,  - образы ,  при канонических погружениях , : всякое аффинное отображение  в , отождествляется с линейным отображением  пространства в пространство , удовлетворяющим требованию , и группа аффинных биекций  отождествляется с подгруппой , сохраняющей аффинную гиперплосклость

            Случай конечной размерности.

Если аффинное пространство  имеет конечную размерность , то в  можно выбрать базис  так, что  при  и . Тогда  есть декартов репер в  с началом  (рис 4).

            В этом случае  является множеством точек пространства , таких, что ; следовательно, это аффинная гиперплоскость с уравнением  в базисе . Эндоморфизмы  пространства , удовлетворяющие условию , - это те эндоморфизмы, матрица которых в базисе имеет вид

,                                 (2)

где  - квадратная матрица порядка . Эндоморфизму  с матрицей (2) соответствует аффинное отображение , координатное выражение которого в декартовом репере  имеет форму

 ,                     (3)

Матричные вычисления показали бы, что для этого соответствия соблюдаются правила композиции отображений. С другой стороны, эндоморфизм  с матрицей (2) обратим тогда и только тогда, когда обратима матрица (2), и тогда выполняется и равенство . Таким образом, получается

Теорема 7.4. Группа аффинных биекций -мерного аффинного пространства изоморфна подгруппе линейной группы , образованной матрицами вида (2), где  принадлежит .

В частности, группа аффинных биекций  тела  изоморфна подгруппе  в , состоящей из матриц вида .

8.Геометрическая характеризация инъективных полуаффинных отображений.

            Ниже мы обозначаем через ,  два аффинных пространства, ассоциированных соответственно с векторными пространствами  над произвольными телами . Мы дадим чисто геометрическую характеризацию полуаффинных отображений  в . Для ясности начнем со случая инъективных отображений.

            Теорема 8.1. Допустим, что . Для того, чтобы инъективное отображение было полуаффинным, необходимо и достаточно, чтобы оно удовлетворяло следующим двум условиям:

1.    Образ любой аффинной прямой из  был аффинной прямой в ;

2.     Образы двух параллельных прямых был параллельными прямыми.

Доказательство. Необходимость условия очевидна. Доказательство

достаточности проведем в несколько этапов, все время предполагая, что  удовлетворяет условиям 1) и 2).

А). Образы при  двух различных прямых ,  из  суть также две различные прямые.

В самом деле, пусть ,  - прямые в , имеющие один и тот же образ , пусть  -  две различные точки их общего образа. Тогда прообразы  точек  и принадлежат  и  одновременно и различны (в силу иньективности ), откуда следует, что .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.