скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Структура аффинного пространства над телом

     Б). Отображение ,  не зависит от выбора в .

В самом деле, пусть другая точка  и , таковы, что . Если

- несплющенный  параллелограмм, то из 2) и А) следует, что его образ тоже настоящий параллелограмм, откуда

,   

Если точки  принадлежат одной прямой , то предположение  позволяет выбрать в точки  так, что . Применяя предыдущий случай, имеем

откуда.

Отображение  обозначаем отныне просто .

В).  Отображение  инъективно и удовлетворяет условию

   .                  (1)

Инъективность  сразу следует из инъективности . С другой стороны, для любых данных  выберем в  такие точки , , , и . Тогда .

Д). Существует отображение , такое, что

   .                     (2)

Доказательство. Достаточно найти , удовлетворяющее условию (2) при . Для заданной пары  выберем , ,  в  так, что , . Так как точки ,  и  коллинеарны, то коллинеарны и векторы ; отсюда вытекает существование некоторого скаляра, скажем , такого, что . Остается доказать, что  не зависит от вектора  (по предположению ненулевого).

1).  Если два неколлинеарных вектора, то неколлинеарны и , ; в противном случае образы двух прямых , , проходящих через одну и ту же точку  с направляющими , совпадали бы, что невозможно в силу А).

Для любого имеем

,

откуда в силу неколлинеарности ,  

.

2). Если , - коллинеарные ненулевые векторы, то предположение  позволяет выбрать   так, что пары  и  свободны. Отсюда находим, что

   .

Так для каждого  отображение ,  есть константа, мы обозначим ее через .

Е). Отображение  является изоморфизмом тел.

 Выбрав , мы увидим прежде всего, что соотношения  и  влекут (с учетом )

 и ,

т.е. показывают, что  - гомоморфизм тел.

            Наконец, для любой точки  отображение  есть биекция  на прямую ; ограничение на есть биекция на прямую . Следовательно, композиция , биективна. Отсюда вытекает, что отображение  биективно.

            Итак, изоморфизм тел, полулинейное отображение, ассоциированное с , и полуаффинное отображение.

Случай плоскости.

Если и  двумерны, то условие 2) в теореме 8.1 следует из условия 1) и инъективности . Мы можем, таким образом, сформулировать

Следствие. Если ,аффинные плоскости и - инъективное отображение, такое, что образ любой прямой в есть прямая в , то полуаффинное отображение.

Замечание. Условия теоремы 8.1 выполняются, в частности, если инъективное отображение в себя, такое, что образ любой прямой  есть прямая, параллельная ; тогда можно непосредственно доказать, что  дилатация.

9.Основная теорема аффинной геометрии.

            Исходя из теоремы 8.1 и опираясь на характеризацию аффинных многообразий, представленную теоремой 4.8, мы докажем здесь следующую теорему:

Теорема 9.1. Пусть ,аффинные пространства над телами , , отличными от поля ; для того, чтобы отображение было полуаффинным, достаточно, чтобы

1). Образ любой прямой в  был прямой в , либо сводился к одной точке.

2). Аффинное подпространство в , порожденное , имело размерность .

            Мы подразделим доказательство этой теоремы на семь лемм; в каждой из них предполагается, что  удовлетворяет условиям 1) и 2).

Лемма 1. Если  есть ЛАМ в , то  - ЛАМ в .

Доказательство. Пусть  и - две различные точки в . Тогда прямая  есть по условию 1) образ прямой ; так как прямая содержится в , прямая  содержится в . Результат теперь вытекает из теоремы 4.8.

Лемма 2. Если - ЛАМ в  и множество  непусто, то оно является ЛАМ в .

Доказательство. Результат очевиден, если  сводится к одной точке. В противном случае для любой пары различных точек ,  прямая  содержится в  согласно 1). Таким образом, прямая содержится в  и теорема 4.8 показывает, что  есть ЛАМ.

Лемма 3. Для любой непустой части  пространства

.                             (1)

Доказательство.  есть ЛАМ в , содержащее ; по лемме 1,  есть ЛАМ в , содержащее . Отсюда следует включение

.

Аналогично, по лемме 2, есть ЛАМ в , содержащее , а потому и ; имеет место включение ; применение отображения  дает .

Окончательно получаем равенство (1).

Лемма 4. Пусть - пара параллельных прямых в . Если сводится к точке, то же имеет место и для . Если   -  прямая, то и - прямая, параллельная .

Доказательство. Мы можем предположить, что . Тогда  есть ЛАМ размерности 2 в , порожденное двумя точками , одной из прямых и точкой  другой прямой; по леммам 2и 3,  есть ЛАМ размерности .

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.