скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Шпора

Вопрос№11

Если пов-ть Р задана параметрич. ур-ями

             (u,v) G

ф-ии x,y,z непрерывны с частными производными то   поверхностный интеграл  1-го рода вычисл. С помощью интеграла двойного рода,взятого по обл. G по ф-ле:

Если пов-ть Р задается явным урав. Z=F(x,y)=z(x,y)

Где (x,y),причем ф-ия F-непрерыв. Со своими

Часными произв.,то поверхностный интегр.1-го рода

Вычисл.по ф-ле :

где P и Q соотв.часные произв.

     Поверхн.интеграл 2-го рода

Криволин.интеграл 2-го рода:

Пусть задана двусторонняя пов-ть S и на верхн.

Стороне задана ф-ция U=F(x,y,z).Разобьем задан.

Повер.S непрерывн.кривыми на конечное число

Частичных поверх. S1,S2….Sn.Проэктир.эти поверх.

На XOY , -площадь прэкции повер.Si:

 

Если сущ.предел  Lim  s n  при  не зависит

От способа дел.области на части и выбора точек Mi,

То его наз.повер.интегалом 2-го рода по поверхн.и

Обознач. :

Если же проэктировать пов-ть на другие плоскости ,то

Получится:

Пусть на пов-ти заданы три ф-ции P(x,y,z), Q(x,y,z)

R(x,y,z) тогда повер.интегр.2-го рода общего вида наз.

Пусть пов-ть S явл.гладкой поверхн.,такой что в каждой точке ее

Сущ. Пл-ть такая что в каждой т.пов-ти сущ.нормаль.Обозначим

Через ,,-углы ,которые образуют углы с осями OX,OY,OZ.

Тогда,как и для криволин.интеграла имеет место форма между повер.Интегр.1 и 2 рода:

Имеет место следующ.ф-ла замены перем.в пов.интегр.2-го.

Пусть пов-ть S задается своими парам.ур-ми:

ф-ции x,y,z –непрерыв.и имеют непрер.частн. произв.Тогда:

 Имеет место ф-ла Стакса ,связывающ.криволин.интеграл по контуру

Пов-ти с повер.интегралом 2-го по задан.пов-ти.

 Пусть задана некоторая гладкая повер.S на верхн.стороне этой повер.

Заданы три ф-ии P(x,y,z),Q(x,y,z),R(x,y,z) непрерыв.и имеющ.непрер.

Частн.произв.по своим аргументам и L-контур повер.,проходящий в

Полож.направления.Тогда:

Билет №14

Поток вектора через поверхность

Пусть задана некоторая область(тело) ДÌR3 Пусть над этой областью определено поле вектора (М), МÎД ,   Аx ,Ay ,Az

Возьмем в области Д некоторую поверхность S обозначим через - нормальный вектор поверхности   -единичный вектор , данного нормального вектора   

 где l,m,n -углы , которые образует нормаль с осями координат

Потоком вектора  через заданную поверхность S (во внешнюю поверхность) называют следующий поверхностный интеграл 1-го рода

Проекция вектора на ось

Ап – проекция вектора  на вектор  Ап =пр

А тогда поток вектора будет равен

Вопрос №16

Общий вид диф уравнения F(x, y, y’)=0  y’=f(x,y) (1).

Решением дифференциальное уравнение первого порядка называется всякая функция  y=j(x), которая будучи подставлена в данное уравнение обращает его в тождество.

j’(x)= f (x, j(x));

 

Задача Коши для диф. уравнения 1 порядка.

Требуется найти решение диф. ур-я (1) удовлетворяющего следующему условию  (2).

Теорема Коши.

Пусть задана на плоскости XOY некоторая обл. Д и задано диф. ур-е разрешённое относительно производной, тогда если функция f(x, y) и её частная производная непрерывны в обл. Д, и  некоторая фиксированная точка обл. Д, то существует и единственная функция y=j(x) являющаяся решением (1) и такая, которая в т.

принимает значение , т.е. удовлетворяющая заданному начальному условию  .

 

Т.е. если существует решение диф. ур-я, то таких решений бесконечное множество.

График функции являющийся решением диф. ур-я принято называть интегральной кривой, процесс решение принято называть интегрированием.

Точкув плоскости XOY называют особой точкой диф. ур-я если в этой т. не выполняется условие теоремы Коши, т.е. особая т. это такая т. через которую может вообще не проходить ни одной интегральной кривой, либо проходить множество.

Решения диф. ур-я в каждой т. которого нарушается условие единственности из теоремы Коши, принято называть особым решением диф. ур-я. График особого решения называется особой кривой.

Определение общего решения диф. ур-я 1 порядка:

Функция y=j(x, C), где С произвольная константа, называется общим решением диф. ур-я (1) если выполнены следующие условия:

1.     Функция y=j(x, C) является решением ур-я (1) при любом значении произвольной константы С;

2.     Какова бы ни была т. Î Д найдётся такое значение произвольной константы , что функция y=j(x,) удовлетворяет заданному начальному условию, т.е. j

Частным решением данного диф. ур-я называется решение этого ур-я которое может быть получено из общего решения при некотором фиксированном значении произвольной константы С.

Определение:

Если решение диф. ур-я (1) может быть получено в виде, причём это ур-е не может быть явно разрешено относительно y, то функцию принято называть общим интегралом диф. ур-я (1), где С – произвольная константа. Если решение получено в виде , где - явная константа – частным интегралом диф. ур-я.

Особое решение данного диф. ур-я (1) ни при каком значении константы С не может быть получено из общего решения..

                     Вопрос №17

Диф. ур-ем с разделёнными перемеными принято называть ур-е вида (1):

 (1)

Если y=y(x) является решением ур-я (1), то и правая и левая части этого ур-я представляют собой дифференциалы от переменной x, т.е. имеем равенство двух дифференциалов, то тогда неопределённые интегралы отличается разве лишь на константу. Т.е. интегрируя равенство (1), получаем общее решение данного диф. ур-я:

Уравнения с разделяющимися переменными:

 

Уравнения, приводящиеся к уравнениям с разделёнными переменными.

докажем, что это ур-е можно привести к ур-ю с разделёнными переменными.

Т.е.

Если

т.е.

Пример:

Билет №15

                            Дивергенция , циркуляция ротор вектора

Пусть задана некоторая пространственная область Д над которой определенно поле вектора  и S –некоторая поверхность в данной поверхности Д

Рассмотрим интеграл , выражающий поток вектора через поверхность S

Обозначим Аx = P(x,y,z) , Ay =Q(x,y,z) , Az = R(x,y,z)

поверхность S ограничивает тело Д1 

  - расходимость (дивергенция ) вектора

 - уравнение Остроградского-Гаусса

Ап – проекция вектора  на нормаль поверхности

                     Циркуляция , вихрь и ротор вектора

Пусть в пространстве задано некоторое тело Д  и пусть в теле Д рассматривается некоторая кривая L , которая гладкая , имеет непрерывно изменяющуюся касательную

Обозначим через a,b,g углы , образует касательная к кривой L с осями координат

Пусть над этим телом определенно поле вектора

Тогда криволинейный интеграл по кривой L

Рассуждая как и прежде можно показать , что

L0 - единичный вектор касательной L1 

L1  - касательный вектор к кривой L

Если кривая L является замкнутой кривой , то такой интеграл принято называть циркуляцией вектора  вдоль замкнутого контура L   - циркуляция  

Пусть теперь в некоторой области Д задана поверхность S , контур которой обозначим через L

 

 - формула Стокса

Ротором векторного поля  называется вектором (или вихрем) , имеющий следующие координаты и обозначающиеся

 Циркуляцией вектора  вдоль поверхности S равна потоку вектора  через заданную поверхность S

   -  формула Стокса

Билет №13

Криволинейные интегралы в пространстве и объем тела в криволинейных координатах

Пусть в пространстве OXYZзадано тело G.И пусть в другом пространстве OUVW задано тело Д

И пусть заданы 3 функции

взаимно однозначно отображающие область Д в области G

Будем считать функции x,y,z –непрерывными и имеющие непрерывные частные производные

Рассмотрим Якобиан

Можно показать , что в случае взаимно однозначного отображения области Д и G якобиан ни в одной точке области Д не обращается в 0

А значит в области Д сохраняет один и тот же знак Координаты (U,V,W) принято называть криволинейными координатами точек области G

И тогда можно показать , что объем области G в криволинейных координатах выражается по следующей формуле

Если теперь в области G будет задана функция f(x,y,z) –непрерывная в этой области, то справедлива следующая формула замены переменных в тройном интеграле

При замене переменных в тройном интеграле наиболее часто используются цилиндрические и сферические координаты

Под цилиндрическими координатами следует понимать объединение полярных координат на плоскости XOY и аппликаты z      r,q,z

r-расстояние от начала координат до проекции тМ на плоскость

q-угол , образованный радиус вектором ОМ , в пол направлении

    циллиндрические координаты 

0£ r < +¥ , 0£ q < 2p , -¥< z < +¥

Подсчитаем якобиан в случае цилиндрических координат 

q- угол , образованный проекцией радиус-вектора тМ

j-угол, образованный радиус-вектором тМ

r- радиус-вектор тМ, равный ОМ

Сферическими координатами принято называть r,j,q

Где r- расстояние от начала координат до тМ

j- угол , образованный радиус-вектора с осью Z

q- угол, образованный проекции радиус-вектора с осью X

r=(ОМ)     0£ r < +¥ , 0£ j < p ,  0 < q < 2p

Найдем якобиан для сферических координат

  

=cosj[r2 cos2 qcosj sinj + r2 sin2 q sinj cosj] + rsinj [r sin2 j cos2 q + r sin2 j sin2 q] =r2 cos2 j sinj + r2 sin3 j=r2 sin j I(r,j,q)=r2sinj

Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.