скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Шпора

Вопрос №18

 Пусть задана функция в области Д, полкости XOY, функцию  называют однородной функцией m-той степени относительно переменных x и y, если каково бы ни было число t>0, выполняется равенство:

Пример:

Определение: диф. ур-е 1 порядка разрешённое относительно производной называется однородным диф. ур-ем 1 порядка, если его правая чаcть (функция f(x,y)) является однородной функцией 0-й степени.

Метод решения: Пусть (1) является однородным уравнением (1).

 Пусть

2) если то

т.е.

Билет№20 Линейные диф.

Уравнения1- порядка. Метод подстановки.

Линейным уравнением 1-го порядка называют

уравнения вида:

(1)    y’+yP(x)=Q(x) – где P(x) и Q(x) некоторые

функции переменной х , а y’ и y входят в уравнение

в 1 степени.

1.Метод подстановки:

   Будем искать решение уравнения 1 в виде

произведения y=U(x)V(x) при чём так, что мы

можем подобрать одну из функций по желанию,

а вторую так, чтобы удовлетворяла (1) :

y’=U’V+UV’ ; U’V+UV’+UV*P(x)=Q(x) ;

U’V+U(V’+V*P(x))=Q(x)

 Найдём V ,чтобы V’+VP(x)=0 :

   

  Тогда  U’V=Q(x)

    

   

   

y’+y cos(x)=1/2 sin(2x)    y=UV    

U’V+UV’+UVcos(x)=sin(x)cos(x)    

V’+Vcos(x)=0    dV/V=-cos(x)dx       

ln(V)= -sin(x)    V=e-sin(x)

  

sin(x)=t

Билет №22

Уравнение Бернулли и Рикотти и их решение.

Уравнение Бернулли – это диф. Ур-е следующего вида :

где P(x) и Q(x) – непрерывные функции  m – действительное число ¹0 и ¹1

разделим уравнение на  ym :

 - приведем его к линейному

Обозначим через  а теперь диференциируем

теперь подставим в уравнение

получили линейное уравнение .

Уравнение Рикотти – это диф.  следующего вида

Где P(x),q(x),r(x) – некоторые непрерывные функции

Рассмотрим несколько случаев

1) если ф-ции P(x) , Q(x) и r(x) – явл. Константами  то в этом случае сущ. решением ур-я Рикотти т.к. в этом случае ур-е явл. Ур-ем с разделенными переменными .

2) если q(x)=0 имеем лин. Ур-ние

3) если r(x)=0 то имеем ур-е Бернулли

Если не выполяется ни одно из этих 3 условий , то ур-е Рикотти решить нельзя , неразрешимо в квыадратурах . Однако если эти три случая  , но возможно найти  хотя бы одно частное решение этого ур-я  то ур-е решается в квадратуре .

Установим это : пусть - явл. Часным решением  ур-я Рикотти т.е.

тогда введем новую функцию z=z(x)

Положем  , 

Подставив в уравнение получим

а это ур-е Бернулли

Билет №23

Уравнение в полных дифференциалах и их решение

Пусть задано диф. ур-е  ел. Вида:

где P(x,y) и Q(x,y) – непрер. Функции  имеющие непрерыв часн. Производную 2 порядка включительно.

Диф. ур. Назыв. Ур-ем в полных диф-лах , если  такое что

т.е. ур. В этом случае имеет вид :

это уравнение явл полным диф. функции U как ф-ции двух переменных:

если выполняется равенство тогда то левая часть  а тогда его решение

 - общий интеграл диф. Ур.

Теорема о необходимости и достаточности условия того что Ур было ур-ем в полных дифференциалах

Теорема : Для того чтобы ур было ур-ем в полных диф.  в некоторой   Д  принадл ХОУ

Необх. И дост. Чтобы во всех точках обл. Д выполн равенство  если условие выполняется можно найти ф-цию  что будет выполняться рав-во след. Образом.

найдем

Билет№21.

Метод вариации производной постоянной при решении линейного диф. уравнения  1-го порядка.

y’+P(x)y=Q(x)   (1)   -задано линейное неоднородное уравнение. Рассмотрим  соотв. ему однородное уравнение  y’=P(x)y=0   (2).  Найдём общее решение:

     

                     

 Будем искать решение в том же виде, что и однородного, только считая с не произвольной константой ,а функцией от х :

Билет№19  Уравнения, приводящиеся к однородным.

К таким уравнениям относят уравнения вида:

      где a,в,с - const

1)Введём: чтобы исчезли с1 и с2                      После нахождения конкретных k и h и подстановки их в наше уравнение, с учётом того, что  получаем : Это уравнение является однородным и решается подстановкой

2).  Тогда:         Подставим : Сделаем замену:                                

1). Допустим                                  φ(z)=x+c           φ(a2x+b2y)=x+c

2).  Теперь допустим Тогда получим z=c.

Билет №24

Интегральный множитель и его нахождение

Пусть задано  диф. ур-ние в диф. форме вида :

не всякое такое уравнение явл. Уравнением в полных виференциалах однако доказано что для всякого такого ур-я может быть подобрана ф-ция такая что после умножения  левого и правого ур-я на эту функцию данное уравнение стан ур-ем в полных диф. Ф-цияю назыв интегральным множителем данного уравнения

Найдем функцию определяющую интегр. Множитель данного уравнения:

тогда должно выполн. Рав-во:

имеем уравнение в частных производных относит неизв функции Мю.Общего метода нахожения которой не существует

Найдем интегр множитель в случае если он явл ф-цией от одной из перемен.

1)Найдем условие при которых  функция должна удовлетв равенству

 ;будет зависеть только от Х если правая часть ур будет зависеть только от Х

2) Аналогично и =(У)

 ;будет зависеть только от Х если правая часть ур будет зависеть только от У

Вопрос №26.

    Уравнение вида: f(x,y¢)=0.

1) Предположим, что данное уравнение можно разрешить относительно y¢; y¢=fk(x), k=1,2,…

  Получим совокупность таких решений. Она является общим решением данного уравнения.

……………………………….

2) Пусть оно не разрешается относительно y¢ и разрешается относительно x. Пусть оно эквивал. Такому x=j(y¢). Будем искать  решение данного уровнение в параметрической форме. y¢=p=p(x).

Пусть x=j(p),       А y ищем так:

      dx=j¢(p)dp       dy=y¢dx=pj¢(p)dl.

Отсюда    

Тогда общее решение

3) Предположим, что ур-ние не разрешено не относ. х, не относ. y¢, но оно может быть представлено в виде с-мы двух ур-ний, эквивалентных данному ур-нию: a £ t £ b

                               dy=y¢dx          dx =j¢(x)dt

                               dy=y(t)* j¢(t)dt

Тогда парметрическое решение данное ур-я

Билет 28.

Ур-ние Логранжа

Ур. Лог.имеет следующий вид 

где ф-цияи непрерывная и

сменная производная по своему аргументу.

Покажем что путём  диф-ния и введения

параметра можно получить общее решение

в параметрической форме.Пусть у`=p=p(x)

Подставляем в ур.

   (1)

Продиф-ем на х

Рассмотрим два случая:

1)    

Будем смотреть на это ур-ние как наур-ние

 от неизв. Ф-ции х, которая в свою очередь явл.

Ф-цией параметра р.Тогда имеем обычное

инт.ур.относительно неизв.ф-ции, которую

можем найти.

Пусть общим интегралом этого ур.будут

    F(p,е,c)=0  (2)

Объеденим (2) и (1)             

А это и есть общее решение ,представленое

 через параметр Р.

2) ,тогда Р=0,но такая constanta,

что удовлет. решению ур. :

Пусть РI(I=1,2,..) будут решением этого ур.

Тогда решением  первоначального ур.А.

будут ф-ции ,

которые явл. Особыми решениями ур. А.

 И не могут быть получены общим решением.

     Ур.Клеро.

Ур.Клеро имеет вид

где

-непрер. и симетр.произв.по своему

аргументу. Вводим параметр .

Тогда    (3)

 Диф-ем по Х

1)     Если ,то р=е, а тогда

 подставляем в (3)и получаем:

явл. общим решением ур. Клеро

2)     тогда имеем параметрическое ур.

общее реш.

   

Пример 

Замена

1)       

общее решение:

Билет 27.

Уравнение вида F(y,y`)=0

1)Пусть ур-ние разрешимо относ.

y`,тогда y`=fk(y) Разрешим относ. y, где к=1,2….

k(y) .

Пустьfk(y)0 тогда  

Считаем х-функцией от у.

-это общий интеграл данного ур-я .

     общее решен.х.

Пусть fk(y)=0 . Тогда решен.данного ур-я

могут  быть ф-ции ,где- консты, причём

такие,которые удовлнтв.условиюF

2)Пусть ур-ние не разр.относ.у,, но разреш. отн. y, т.е. пусть

наше ур-е эквивал. Ур-ниюТогда общее реш.розыскивается в парометрич. форме.Вводят параметры таким образом

а)пусть тогда

,

а тогда:

- общее решение в пар-ой форме

б) пусть у’=0, тогда у=const

Решением ур-ния будут ф-ции у=к ,

какие удовлет.ур-ние F(k,0)=0

Пример: решить ур.  

Разреш. относ. У .тогда

;

Билет 25.

Рассмотрим несколько случаев:

1.Пусть задано следющее диф. ур-ние:

Это диф. ур-е 1-го порядка n-ой степени, где aI (x;y) – некото- рые непрырывные ф-ции двух переменных в некоторой обл. Q Ì R2 (i=0,…,n). Мы имеем ур-е n-ой степени относительно 1-ой производной, а известно, что всякое ур-е n-ой степени имеет вточности n-корней, среди которых есть как действительные так и комплексные. Пусть например это ур-е имеет какоето количество m £ n действительных корней. Т.к. коэффициенты этого ур-я являются ф-циями двух переменных, то ясно, что корни тоже будут ф-циями двух переменных. Пусть это будут решения   y1=fk(x;y), k=1,2…m.

Ур-е (1) свелось к m - ур-ий  1-го порядка. Пусть это ур-я, имеющие общий интеграл  Fk=(x;y;c)=0, k=1,2…n. Тогда совокупность всех этих общих интегралов

и будет общим решением данного диф. ур-я (1).

Пример:

Пусть x=0,а ур-ние разделим на x

     

     

              

       

    

Ур-я вида:   F(y!)=0

  Пусть заданное диф. ур-е явно зависит только от y! и не зависит явно от x и y. Тогда мы имеем некоторое алгебраическое ур-е относительно производных. А такое алгебраическое ур-е пусть имеет конечное или бесконечное множество действительных решений относительно производных. Т.е. y! = ki , i= 1,2… , где ki – некоторые действительные числа. У нас выполняется условие F(ki)º0. Решим ур-е y!=ki; y=kix+c; ki=(y-c)/x. Общий интеграл заданного диф. ур-я

Пример: 

(y!)4-4(y!)2+1=0

k4-4k2+1=0  действительные корни есть

Значит сразу получаем общее решение

 [N1]


Страницы: 1, 2, 3, 4


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

Обратная связь

Поиск
Обратная связь
Реклама и размещение статей на сайте
© 2010.