скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыДипломная работа: Разработка методов и средств реабилитации объектов отравляющих веществ

Скорость разложения зарина в атмосфере не установлена. Однако известно, что будут протекать реакции гидролиза, фотолиза и окисления. Зарин достаточно устойчив в атмосферном воздухе. Так, при относительной влажности воздуха 60-70 % начальная концентрация зарина в течение 24 часов снижается в среднем на два порядка. Скорость гидролиза зарина в воде зависит от температуры, рН и состава воды. Гидролиз идет быстрее в кислой и щелочной среде. С повышением температуры на каждые 10 °С скорость гидролиза в нейтральной среде увеличивается почти вдвое. Гидролиз зарина существенно зависит от рН. Так, по данным [25] при 20 °С в обычной воде период полуразложения изменяется с 461 ч (рН=6,5) до 46 ч (рН=7,5). При 25 °С период полуразложения уменьшается от 237 ч (рН=6,5) до 24 ч (рН=7,5). Период полуразложения, равный 8,3 часа при 0 °С и рН=6,5, указывает на некоторую стойкость этого вещества при низких температурах. По данным [23] период полуразложения при 25 °С и рН=7 составляет 54 часа.

Гидролиз зарина протекает в две стадии. На первой быстрой стадии образуется изопропиловый эфир МФК (VII). Вторая стадия идет медленнее с образованием МФК (III) и изопропанола (рисунок 2). Продукты гидролиза зарина малотоксичны.

Рисунок 2 - Гидролиз зарина

Известно, что скорость трансформации зарина в почве обусловлена процессами гидролиза и микробиологической деструкции. По данным [25] более 90 % внесенного в почву зарина разлагается в течение 5 дней. Согласно [24] скорость разложения зарина в песке возрастает с увеличением влажности. Так, при 20°С и влажности песка 0,2 % разлагается 38 % вещества, а при влажности 5 - 50 % вещества.

Зарин более стоек при низких температурах. В статье [24] представлена информация о скорости разложения некоторых продуктов деструкции зарина. Зарин разлагается с образованием VII. Соединение VII достаточно устойчиво в ОПС. В результате гидролиза VII образуется МФК. Хорошая растворимость МФК в воде указывает на возможную миграцию МФК в грунтовые воды.

Зоман более устойчив к действию воды, чем зарин. Гидролиз зомана идет и в кислых, и в щелочных средах. Согласно [22] время 50 % -го гидролиза при 30 оС и величинах рН, равных 2, 4 и 7, составляет 6,4; 250 и 41 час соответственно. Согласно [26] период полуразложения при 25 оС и рН=6 составляет 60 часов. Время 50 % -го гидролиза при 20 оС и рН=7 по данным [22] составляет 82,5 часа. Гидролиз протекает в две стадии. На первой стадии образуется пинаколиловый эфир МФК (VIII), который далее медленно гидролизуется до МФК. При рН>10 гидролиз VIII осуществляется за несколько минут с образованием III. В почве зоман также разлагается за счет реакции гидролиза до соединений VIII и III. Схема реакции гидролиза зомана представлена на рисунке 3:

Рисунок 3 - Гидролиз зомана

Основные продукты трансформации ФОВ, появление которых возможно в ОС в процессе функционирования объекта по УХО, представлены в таблице 4.

Таблица 4 - Основные продукты трансформации ФОВ в ОС

ФОВ Продукты трансформации ФОВ в ОС
атмосфера вода почва
Vx - II,III,IV,V,VI II,III,IV,V,VI
Зарин VII III, VII III, VII
Зоман - III,VIII III,VIII

Следует отметить, что проблема трансформации ФОВ в объектах ОС исключительно сложна. Поэтому перечень продуктов трансформации ОВ, приведенный в таблице 4 на основании обобщения литературных данных, может корректироваться по мере обнаружения в ОС новых загрязняющих веществ и отработки методик их определения.

1.3 Самоочищение почв

Процессы перераспределения загрязнителей в почвах сопровождаются самоочищением экосистем, закономерности которого до конца еще не изучены. Познание этих процессов имеет весьма важное значение для их использования при разработке новых способов и технологий очистки загрязненных территорий, а также для выявления безопасных и предельно допустимых уровней (ПДУ) техногенных воздействий на ОС.

Под самоочищением ОС понимается совокупность самопроизвольных природных физических, геохимических и биологических процессов, происходящих в ее пределах и направленных на снижение в почвах, подземных и поверхностных водах и т.п. загрязнителей до уровней, безопасных для экосистем.

В основе процессов самоочищения, как известно [27], лежат процессы абиотического или биотического превращения химических веществ-загрязнителей:

- физические процессы массопереноса: разбавление (рассеивание, перемешивание), вынос загрязнителей за пределы экосистемы, испарение, сорбция;

- химическая трансформация: гидролиз, фотолиз, окисление и др.

- микробиологическая трансформация;

- бионакопление.

Особая роль в процессах самоочищения принадлежит автотрофным организмам. Весьма существенную роль в самоочищении ОС играют различные круговые и циклические процессы массо- и энергопереноса, включая глобальный круговорот воды, круговые процессы в биогеоценозах и т.п. Техногенное нарушение естественных круговых или циклических процессов в почвах и сопредельных средах приводит к нарушению функций «самоочищения».

К абиотическим превращениям загрязнителей в геологической среде относятся окислительные и восстановительные процессы, гидролиз, фотохимические реакции и т.п.

К биотическим превращениям относятся ферментативная детоксикация (например, тяжелых металлов), ферментативное окисление, разложение, восстановление и т.п. [28]. Органические токсиканты окончательно выводятся из ОС лишь в результате их минерализации, т.е. разложения до диоксида углерода, воды и других неорганических веществ (например, СО, НСl, NH3 и т.п.). Разные соединения обладают различной устойчивостью к минерализации.

Биологическая деструкция загрязнителей может вызываться различными организмами (энзимы, грибы, микроорганизмы и т.д.). При полной биологической деструкции образуются только вода, углекислый газ и появляются новые органические биотические образования. Однако чаще происходит неполная биологическая деструкция, при которой какой-либо вид организмов осуществляет лишь определенную стадию (ступень) процесса разложения. В итоге, для полного биологического разложения какого-либо загрязнителя на конечные продукты в большинстве случаев требуется совместная деятельность большого числа различных организмов, объединенных в данном биогеоценозе.

По этой же причине более богатые по видовому разнообразию биогеоценозы обладают большей устойчивостью к различным загрязнителям, большей способностью к самоочищению, чем бедные в видовом отношении биогеоценозы. В общем случае, чем сильнее молекулярное строение того или иного загрязнителя отклоняется от строения близких природных веществ, тем сложнее идет процесс его биологического разложения.

Процессы самоочищения в ОС ограниченны. Самоочищение может осуществляться лишь в определенных пределах загрязнения, не превышающих некоторых границ, уровень которых лимитируется механизмами указанных выше процессов самоочищения. Для каждого механизма, как и для каждого вещества-загрязнителя, существует свой ПДУ, превышение которого уже не позволяет системе самопроизвольно «справиться» с данным загрязнителем в конкретных геохимических условиях. Превышение этих уровней исключает самопроизвольное очищение системы. В этом случае система переходит уже в качественно иное состояние. Многообразие механизмов самоочищения в ОС, как и обилие различных веществ-загрязнителей, определяет чрезвычайную сложность этих процессов.

С термодинамической точки зрения, самоочищение ОС происходит вследствие стремления изолированной системы к равновесию (по всем термодинамическим потенциалам, включая и химические потенциалы компонентов-загрязнителей, которые (за исключением энтропии) в состоянии равновесия достигают минимальных значений). При этом энтропия такой системы возрастает в соответствии со вторым началом термодинамики. Хаотическое рассеивание загрязнителей, их разбавление, растворение и т.д. сопровождается возрастанием энтропии экосистемы и является самопроизвольным процессом. Этот процесс более вероятен, чем противоположный - самопроизвольное концентрирование, упорядочивание и локализация загрязнителей в каком-либо одном месте. Поэтому самоочищение ОС может осуществляться только за счет рассеивания загрязнителей или их деструкции.

С другой стороны, если считать, что любое техногенное загрязнение создает определенное возмущение в пределах экосистемы, нарушающее ее равновесие, то, согласно принципу Ле Шателье-Брауна, это воздействие вызывает в системе процессы, стремящиеся ослабить эффект данного воздействия. Самоочищение системы идет в соответствии с принципом Ле Шателье-Брауна, который позволяет определить направление смещения равновесия.

Допустимой считается такая нагрузка на экосистему, “под воздействием которой отклонение от нормального состояния системы не превышает естественных изменений и, следовательно, не вызывает нежелательных последствий у живых организмов и не ведет к ухудшению качества среды”. Практически идентичное определение дается А.П. Левичем для обозначения экологически допустимых уровней воздействия, которые “в отличие от предельно допустимых концентраций (ПДК) являются не потенциальными причинами экологического неблагополучия, а непосредственными его симптомами”. Допустимой считается любая нагрузка, не превышающая предельной (т.е. нормативной), которая, в свою очередь, равна критической нагрузке, умноженной на коэффициент запаса (в зависимости от степени "доверия" и потенциальной возможности кумулятивного действия этот коэффициент обычно варьируется от 0,2 до 0,5) [29].

К сожалению, как слишком часто случается в нашей жизни, написать закон или дать основополагающее определение оказывается значительно проще, чем разработать методику измерения частных показателей, закрепленных в законе. Например, кто может решиться хотя бы на, казалось бы, несложное определение, что такое “нормальное состояние экосистемы” и каков у нее “диапазон естественных изменений”? Поэтому, к настоящему времени известны лишь некоторые попытки обоснования "экологических ПДК" для растений суши и для сообществ водоемов рыбохозяйственного назначения.

Экологическое нормирование не является подменой санитарно-гигиеническому нормированию, а, в определенном смысле, дополняет его, ужесточая применяемые стандарты. Например, экологическая индикация может дать сведения о степени и характере загрязнения, распределении загрязнения в водоеме, возможном состоянии водной экосистемы в сезонном масштабе. Из этого следует, что вода, качество которой согласно экологическому контролю признано неудовлетворительным, вряд ли может использоваться для питьевых или хозяйственных целей, но экологически доброкачественная вода не всегда может быть признана пригодной с точки зрения здравоохранения. В последнем случае необходимы специфические микробиологические, токсикологические и химические тесты.

В мировой практике концепция критических нагрузок получила широкое развитие как необходимое руководство по рациональному ограничению антропогенных воздействий. На рабочем совещании ООН понятие “критическая нагрузка” было определено как “количественная оценка воздействия одного или нескольких загрязняющих веществ, ниже которой не происходит существенного вредного воздействия на специфические чувствительные элементы окружающей среды в соответствии с современными знаниями”. С учетом известных проблем кумуляции небольших воздействий и развитию хронических (отложенных) последствий величина критической нагрузки по В.Н. Башкину [28] может быть охарактеризована как “максимальное поступление загрязняющих веществ, которое не вызывает необратимых вредных изменений в структуре и функциях экосистем в течение длительного (50-100 лет) периода”.

Несмотря на глобальную аттрактивность концепции критических нагрузок, количественная оценка их величин до сих пор связана с целым рядом неопределенностей. Прежде всего это относится к самим основополагающим понятиям: например, до сих пор не вполне ясно, где обнаружить "специфические чувствительные элементы", что считать за "необратимые вредные изменения" (за 50-100 лет таковые могут произойти не только с природными компонентами, но и с самим человечеством) и, наконец, что есть “экологическая норма”.

Оценка критичности воздействий предполагает комплексное исследование изучаемого объекта и выявление двух основных интегральных составляющих в поведении экосистемы: фактора антропогенной нагрузки на окружающую среду и отклика, определяющего функциональную устойчивость, продуктивность и разнообразие биотических элементов:

Почва – биокосное тело природы. Располагаясь на границе соприкосновения литосферы, атмосферы и гидросферы, она формирует особую геосферу – педосферу, или почвенный покров Земли. Одновременно почва является одним из главных и сложных компонентов биосферы – области распространения жизни на Земле.

Любую почву можно рассматривать как гетерогенную, многофазную систему, состоящую из трех фаз: твердой, жидкой и газообразной. В твердой фазе преобладают минеральные образования (50…60 % от общего состава почвы), которые представлены первичными (кварц, полевые шпаты) и вторичными (глинистые минералы: каолинит, монтмориллонит, гидрослюды, смешанослойные минералы; минералы оксидов железа, алюминия, марганца, кремния; минералы – соли: доломит, сода, кальцит, магнезит, трона, гипс, ангидрит, мирабилит, галит, фосфаты, нитраты, сульфиды и др.) минералами. К этой же фазе относятся различные органические вещества (до 10 %), в том числе гумус или перегной, а также почвенные коллоиды, имеющие органическое, минеральное или органоминеральное происхождение.

Страницы: 1, 2, 3, 4, 5, 6


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.