скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыКурсовая работа: Принципы определения примесей арсена в неизвестном минерале

Мышьяк как ценную присадку используют и в цветной металлургии. Так, добавка к свинцу 0,2 – 1% As значительно повышает его твердость. Уже давно заметили, что если в расплавленный свинец добавить немного мышьяка, то при отливке дроби получаются шарики правильной сферической формы. Добавка 0,15 – 0,45% мышьяка в медь увеличивает ее прочность на разрыв, твердость и коррозионную стойкость при работе в загазованной среде. Кроме того, мышьяк увеличивает текучесть меди при литье, облегчает процесс волочения проволоки. Добавляют мышьяк в некоторые сорта бронз, латуней, баббитов, типографских сплавов. И в то же время мышьяк очень часто вредит металлургам. В производстве стали и многих цветных металлов умышленно идут на усложнение процесса лишь бы удалить из металла весь мышьяк. Присутствие мышьяка в руде делает производство вредным. Вредным дважды: во-первых, для здоровья людей; во-вторых, для металла значительные примеси мышьяка ухудшают свойства почти всех металлов и сплавов [4].

Более широкое применение имеют различные соединения мышьяка, которые ежегодно производятся десятками тысяч тонн. Оксид As2O3 применяют в стекловарении в качестве осветлителя стекла. Еще древним стеклоделам было известно, что белый мышьяк делает стекло «глухим», т. е. непрозрачным. Однако небольшие добавки этого вещества, напротив, осветляют стекло. Мышьяк и сейчас входит в рецептуры некоторых стекол, например, «венского» стекла для термометров [4].

Соединения мышьяка применяют в качестве антисептика для предохранения от порчи и консервирования шкур, мехов и чучел, для пропитки древесины, как компонент необрастающих красок для днищ судов. В этом качестве используют соли мышьяковой и мышьяковистой кислот: Na2HAsO4, PbHAsO4, Ca3(AsO3)2 и др. Биологическая активность производных мышьяка заинтересовала ветеринаров, агрономов, специалистов санэпидемслужбы. В итоге появились мышьяксодержащие стимуляторы роста и продуктивности скота, противоглистные средства, лекарства для профилактики болезней молодняка на животноводческих фермах. Соединения мышьяка (As2O3, Ca3As2, Na3As, парижская зелень) используются для борьбы с насекомыми, грызунами, а также с сорняками. Раньше такое применение было широко распространено, особенно при обработке фруктовых деревьев, табачных и хлопковых плантаций, для избавления домашнего скота от вшей и блох, для стимулирования прироста в птицеводстве и свиноводстве, а также для высушивания хлопчатника перед уборкой. Еще в Древнем Китае оксидом мышьяка обрабатывали рисовые посевы, чтобы уберечь их от крыс и грибковых заболеваний и таким образом поднять урожай. А в Южном Вьетнаме американские войска применяли в качестве дефолианта какодиловую кислоту («Эйджент блю»). Сейчас из-за ядовитости соединений мышьяка их использование в сельском хозяйстве ограничено [4].

Важные области применения соединений мышьяка производство полупроводниковых материалов и микросхем, волоконной оптики, выращивание монокристаллов для лазеров, пленочная электроника. Для введения небольших строго дозированных количеств этого элемента в полупроводники применяют газообразный арсин. Арсениды галлия GaAs и индия InAs применяют при изготовлении диодов, транзисторов, лазеров [4].

Ограниченное применение находит мышьяк и в медицине. Изотопы мышьяка 72As, 74As и 76As с удобными для исследований периодами полураспада (26 часов, 17,8 суток и 26,3 часа соответственно) применяются для диагностики различных заболеваний [4]

1.2 Качественное обнаружение мышьяка

Для обнаружения мышьяка предложено много различных методов. Некоторые из них предназначены для обнаружения мышьяка только в одном каком-либо валентном состоянии, другие позволяют обнаруживать мышьяк без установления его валентного состояния, но отличаются надежностью или простотой выполнения, или же обладают высокой чувствительностью. При обнаружении мышьяка капельными реакциями используются очень малые количества анализируемого материала. Поэтому выбор того или иного метода зависит от конкретных условий [5].

Однако, несмотря на большое число предложенных методов, пока ни один из них не получил широкого применения. Это связано с тем, что новые методы также не лишены недостатков [5].

1.2.1 Хроматографические методы

В последнее время для обнаружения мышьяка предложен ряд методов, включающих его предварительное хроматографическое отделение. Так, для обнаружения мышьяка в присутствии сурьмы и олова рекомендуется метод осадочной хроматографии на бумаге, импрегнированной 20%-ным раствором Na2S2O3, содержащим 2% KI. После нанесения анализируемого раствора на полоски бумаги их погружают в расплавленный парафин (80—90° С) на 1 – 2 минуты. В присутствии указанных элементов образуются соответствующие окрашенные зоны. Открываемый минимум для мышьяка составляет 5 мкг [5].

Для обнаружения мышьяка в присутствии сурьмы предложен метод экстракционной хроматографии, заключающийся в хроматографировании их в виде пирролидиндитиокарбаминатов, которые предварительно экстрагируют из исследуемого раствора хлороформом. Метод позволяет обнаруживать до 0,1 мкг As [5].

Метод круговой тонкослойной хроматографии на силикагеле с применением смеси (2:2:1) н-бутанола, воды и пиридина в качестве элюента применен для обнаружения микроколичеств мышьяка. Зону мышьяка на хроматограмме обнаруживают опрыскиванием 10%-ным раствором бензидина в ледяной уксусной кислоте.

Для устранения мешающего влияния других элементов при качественном определении мышьяка используются методы ионообменной и адсорбционной хроматографии, а также метод кольцевой бани.

1.2.2 Методы обнаружения мышьяка(III)

Для обнаружения арсенитов рекомендуется реакция с нитратом серебра, образующим с AsO33- в нейтральных растворах желтый осадок, растворимый в HNO3 и NH4OH. Эту реакцию можно проводить также на бумаге или на часовом стекле. Поскольку большинство других анионов образует с ионом серебра осадки, то эта реакция имеет ограниченное значение.

Раствор иода в бикарбонатной среде окисляет мышьяк(III) до мышьяка(V), вследствие чего в присутствии арсенитов бурая окраска, присущая иоду, исчезает. Разумеется, что обнаружению арсенитов по этой реакции мешают восстановители и вещества, реагирующие с иодом [5].

Если предварительно убедиться в отсутствии в исследуемом растворе арсената (например, по реакции с KI или с молибдатным реактивом), то арсенит-ион легко можно обнаружить после окисления его до арсената любой из описанных ниже реакций на арсенат-ион. Окисление можно произвести перекисью водорода Н2O2 или перманганатом калия (избыток МnO4- устраняют добавлением раствора NaNO2) [5].

Для обнаружения арсенитов рекомендуется реакция сопряженного восстановления золота арсенитом(III) в присутствии палладия. На полоску фильтровальной бумаги наносят каплю золото-палладиевого реактива (1,96 г Au и 1,06 г Pd растворяют в царской водке, раствор выпаривают досуха, остаток растворяют в небольшом количестве концентрированной HCl и разбавляют водой до 100 мл), добавляют каплю 40%-ного раствора NaOH, а затем по капле – золото-палладиевого реактива и раствора NaOH. В присутствии мышьяка(III) на бумаге появляется черное пятно, не исчезающее при обработке соляной кислотой [5].

Вполне специфическими реакциями для обнаружения мышьяка(III) в присутствии арсената следует считать реакции арсина, в том числе реакции с хлоридом, бромидом и цианидом ртути(II), нитратом серебра, метолом, диэтилдитиокарбаминатом серебра и трихлоридом мышьяка, если восстановление проводить в щелочной среде (20%-ный раствор NaOH) с использованием в качестве восстановителей порошка металлического алюминия, цинковой пыли или сплава Деварда, а также электрохимического восстановления в щелочной среде, так как в этих условиях до арсина восстанавливается только мышьяк(III), а мышьяк(V) не восстанавливается [5].

1.2.3 Методы обнаружения мышьяка(V)

С нитратом серебра мышьяк(V) в нейтральных и близких к ним растворах образует красно-коричневый осадок Ag3AsO4 (растворимость при 20 °С составляет 8,5∙10-4 г в 100 г воды), нерастворимый в 2 N СН3СООН, но легко растворяющийся в 2N NH4OH, HNO3 и H2SO4 [5].

С иодидами арсенаты реагируют в солянокислых растворах с выделением свободного иода, сообщающего раствору желто-бурую окраску. Если к раствору прибавить небольшое количество бензола, в котором иод лучше растворяется, то после встряхивания иод переходит в бензольный слой, окрашивая его в характерный фиолетовый цвет [5].

Соли магния в присутствии 1 NH4OH и NH4С1 или NH4NO3 образуют с арсенатом белый кристаллический осадок MgNH4AsO4, растворимый в разбавленных кислотах, но нерастворимый в 2,5%-ном растворе аммиака [5].

Арсенаты, в отличие от арсенитов, реагируют с молибдатом в кислой среде при нагревании с образованием малорастворимой желтой молибдомышьяковой кислоты Н7[Аз(Мо2O7)6], часто называемой также мышьяковомолибденовой кислотой. В присутствии солей аммония чувствительность реакции повышается вследствие образования менее растворимого молибдоарсената аммония (NH4)3Н4[As(Мо2O7)6]∙4Н2O [5].

Так как осадок легко растворяется в избытке арсената, то необходимо добавлять раствор молибдата (50 г молибдата аммония, 75 г NH4ОН, 300 мл концентрированной HNO3 и 700 мл воды) в большем избытке (на 1 объем исследуемого раствора необходимо добавлять 5 объемов раствора молибдата) [5].

Чувствительность реакции составляет 70 мкг/мл AsO43-. Обнаружению AsO43- по этой реакции мешают РO4- и AsO33-. Для обнаружения AsO43- и AsO33-при совместном присутствии их сначала разделяют, осаждая AsO43- магнезиальной смесью. Если в исследуемом растворе содержится РO4-, то он осаждается вместе с AsO43-. Осадок отделяют центрифугированием, растворяют в HCl. В фильтрате, полученном после отделения осадка арсената магния-аммония, обнаруживают AsO33-непосредственно или окисляют его до AsO43- и затем обнаруживают по образованию осадка MgNH4AsO4 или другим подходящим методом [5].

Для определения AsO43- предложен ряд микрокристаллоскопических реакций. По одной из них используют образование при взаимодействии с магнезиальной смесью кристаллов MgNH4AsO4∙6H2O [5].

Для проведения этой реакции каплю исследуемого раствора наносят на предметное стекло микроскопа, рядом наносят каплю раствора магнезиальной смеси (130 г нитрата магния, 240 г NH4NO3 и 70 мл концентрированный NH4ОН в 1 л раствора) и обе капли соединяют заостренной стеклянной палочкой. В присутствии AsO43- появляются характерные ромбические кристаллы. Чувствительность реакции 0,05 мкг As. Предельное разбавление 1 : 20 000 [5].

Еще большей чувствительностью характеризуется микрокристаллоскопическая реакция, основанная на образовании кристаллов CaNH4AsO4∙6H2O [5].

В каплю аммиачно-щелочного исследуемого раствора вносят несколько кристалликов ацетата кальция и накрывают стеклом (для защиты от действия СO2 воздуха). Вначале образуется аморфный осадок, из которого быстро выделяются характерные кристаллы в виде узких длинных полосок. Открываемый минимум 0,035 мкг Аs, предельное разбавление 1 : 30 000 [5].

Для обнаружения мышьяка(V) из других микрокристаллоскопических реакций можно отметить образование характерных оранжевых кристаллов при добавлении к исследуемому раствору растворов иодида калия и хлорида цезия, оранжевых кристаллов при добавлении йодида натрия и хинолина или характерных кристаллов при добавлении растворов йодида натрия и уротропина (гексаметилентетрамина) [5].

1.3 Количественное определение мышьяка

1.3.1 Химические методы

Химические методы определения мышьяка включают гравиметрические и титриметрические методы.

1.3.1.1 Гравиметрические методы

В настоящее время гравиметрические методы в аналитической химии мышьяка используются довольно редко. Причиной этому является их большая продолжительность и необходимость тщательного отделения от других элементов [5]. Гравиметрические определения проводят в виде: сульфидов (As2S3, As2S5), пироарсената магния (Mg2As2O7), арсенита и арсената серебра (Ag3AsO3 и Ag3AsO4 соответственно), арсената уранила (UO2NH4AsO4); а также определение после осаждения молибдомышьяковых кислот органическими основаниями.

1.3.1.2 Титриметрические методы

Титриметрические методы определения мышьяка по точности превосходят все другие методы, используемые в настоящее время для его определения, в том числе и гравиметрические. Титриметрические методы характеризуются также небольшой продолжительностью и просты в выполнении. При использовании титриметрических методов необходимое для определения количество мышьяка значительно меньше, чем в случае определения гравиметрическими методами. Некоторым недостатком титриметрических методов является их малая селективность, вследствие чего титриметрическое определение мышьяка, как правило, требует его предварительного выделения [5].

Титриметрические методы определения мышьяка делят на оксидиметрическое, редуктометрическое, комплексонометрическое и осадительное титрование, которые в свою очередь можно разделить на виды по применяемому реагенту.

1.3.2 Физико-химические методы

Физико-химические методы определения мышьяка включают фотометрические, флуоресцентные, нефелометрические, электрохимические и другие методы.

1.3.2.1 Фотометрические методы

В аналитической химии мышьяка фотометрические методы имеют наибольшее значение. Они охватывают очень большой диапазон определяемых концентраций, характеризуются высокой чувствительностью и позволяют в ряде случаев определять мышьяк в различных материалах при его содержании до 1∙10-5 1∙10-7%. В микровариантах фотометрические методы позволяют определять до 0,001 мкг As в пробе. Фотометрические методы просты в выполнении и требуют малой затраты труда [5].

Широкое применение нашли фотометрические методы определения мышьяка в виде мышьяковомолибденовой сини. Они используются для определения мышьяка в его соединениях, железе, чугуне и стали, ферросплавах, меди и медных сплавах, рудах и продуктах медного и свинцово-цинкового производства, железных рудах, свинце, серебре и его сплавах, вольфраме и его рудах, олове, сурьме, висмуте, цинке, ниобии и ванадии, галлии, индии, таллии, кремнии, германии, селене, теллуре, хроме и его окислах, алюминии, кадмии, молибдене и его окислах, никеле, боре, уране, минералах, пиритах и пиритных огарках, фосфорной, азотной, серной и соляной кислотах, природных водах, дистиллированной воде, фосфатах и фосфорсодержащих продуктах, силикатах и силикатных породах, асбесте, сульфиде сурьмы, нефтепродуктах, угле, органических веществах и биологических материалах [5].

1.3.2.2 Флуоресцентные методы

Флуоресцентные методы в аналитической химии мышьяка немногочисленны и значение их невелико. Известен метод определения мышьяка(III) и мышьяка (V), основанный на измерении люминесценции замороженных (при 77 – 80° К) солянокислых и бромистоводороднокислых растворов. Чувствительность определения в 7,6 М HCl мышьяка(V) и мышьяка (III) составляет соответственно 37 и 0,15 мкг/мл и в 7,6 М HBr – 3,7 и 0,0076 мкг/мл [5].

Также можно проводить экстракционно-люминесцентное определение мышьяка, которое основано на экстракции ионного ассоциата, образуемого молибдоарсенатом с бутилродамином, и возбуждении люминесценции ультрафиолетовым светом [5].

1.3.2.3 Нефелометрические методы

Для определения мышьяка нефелометрическими методами имеется много возможностей: по золю сульфида мышьяка, по золю элементного мышьяка, по золю металлического серебра, образующегося при взаимодействии арсина с растворами соответствующих соединений серебра, по взвесям нерастворимых арсенатов и арсенитов и т. д. В связи с этим для нефелометрического определения мышьяка предложено большое число различных методов. Однако нефелометрические методы менее удобны, чем фотометрические вследствие необходимости очень тщательного соблюдения условий, так как оптическая плотность взвесей изменяется во времени. В настоящее время они мало используются [5].

1.3.2.4 Электрохимические методы

Среди электрохимических методов для определения мышьяка используются полярографические, амперометрические и кулонометрические методы.

1.3.2.4.1 Полярографическое определение

Мышьяк является р-элементом V группы периодической системы, что во многом определяет его электрохимическое и, в частности, полярографическое поведение [5].

Ступенчатое электровосстановление ионов мышьяка от As(V) через As(III) до элементного мышьяка и далее до арсина приводит к тому, что в большинстве индифферентных электролитов катодные поляризационные кривые мышьяка имеют весьма сложный характер и часто являются не пригодными для его аналитического определения. Однако полярографический метод определения мышьяка и исследование реакций электроокисления и восстановления этого элемента представляют интерес в связи с тем, что ионы сурьмы в ряде электролитов не оказывают влияния на электродные процессы, протекающие с участием ионов мышьяка, и разделение этих элементов перед их полярографическим определением становится не обязательным [5].

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.