скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Синтез оптимальных уравнений

3.   Уравнения движения объекта. Начнём с рассмотрения одного простого примера. Пусть G – тело, которое может совершать прямолинейное движение (рис. 10). Массу этого тела будем предполагать постоянной и равной m, а его размерами будем пренебрегать (т. е. будем считать G материальной точкой.) Координату тела G (отсчитываемую от некоторой точки O той прямой, по которой оно движется) будем обозначать через x1. При движении тела G его координата x1 меняется с течением времени. Производная представляет собой скорость движения тела G. Будем предполагать, что на тело G действуют две внешние силы: сила трения ─и упругая сила ─ kx1 и что, кроме того, тело G снабжено двигателем. Развиваемую двигателем силу воздействия на тело G обозначим через u. Таким образом, по второму закону Ньютона движение тела G с течением времени будет описываться дифференциальным уравнением

Обозначив скорость движения через x2 (т. е. положив ), мы сможем записать этот закон движения в виде следующей системы дифференциальных уравнений:

                                                       (1.1)

Здесь величины x1, x2 являются фазовыми координатами тела G, а величина u – управляющим параметром, т. е. мы имеем объект, схематически изображённый на рис. 11.

Уравнения (1.1) представляют собой закон изменения фазовых координат с течением времени (с учётом воздействия управляющего параметра), т. е. представляют собой закон движения фазовой точки в фазовой плоскости.

Мы рассмотрели лишь один частный случай, но можно было бы указать целый ряд других примеров, в которых закон движения объекта описывается дифференциальными уравнениями. Чаще всего (см.(1.1)) эти уравнения дают выражения производных от фазовых координат через сами фазовые координаты и управляющие параметры, т. е. имеют вид

                                                            (1.2)

где f1, f2,…, fn – некоторые функции, определяемые внутренним устройством объекта.

В дальнейшем мы сосредоточим своё внимание именно на таких объектах (рис. 2), закон движения которых описывается системой дифференциальных уравнений вида (1.2). В векторной форме систему (1.2) можно записать в виде

                                                                                             (1.3)

где x ─ вектор с координатами x1,…, xn, u – вектор с координатами u1,…, ur и, наконец,  f(x, u) – вектор, координатами которого служат правые части системы (1.2).

Разумеется, невозможно решить систему дифференциальных уравнений (1.2) (т. е. найти закон движения объекта), не зная каким образом будут меняться с течением времени управляющие параметры u1, u2,…, ur. Напротив, зная поведение величин u1, u2,…,ur, т. е. зная управляющие функции u1(t), u2(t),…, ur(t) для t>t0 мы сможем из системы уравнений

                                                      (1.4)

или, что то же самое, из векторного уравнения

                                                                                        (1.5)

однозначно определить движение объекта (при t>t0), если нам известно начальное фазовое состояние объекта (в момент t=t0). Иначе говоря, задание управления u(t) и начального фазового состояния x0 однозначно определяет фазовую траекторию x(t) при t>t0, что согласуется со сделанными ранее (стр. 1) предположениями о свойствах объекта.

Тот факт, что задание начального фазового состояния (в момент t=t0) позволяет из системы (1.4) однозначно определить фазовую траекторию x(t), t>t0, вытекает из теоремы о существовании и единственности решений системы дифференциальных уравнений. Предположим, что, зная начальное фазовое состояние x0 и управление u(t)=(u1(t),…, ur(t)), мы определили фазовую траекторию x(t) (с помощью системы (1.4)). Если мы изменим управление u(t) (сохранив то же начальное состояние x0), то получим некоторую другую траекторию, исходящую из той же точки x0; вновь изменим управление u(t) – получим ещё одну траекторию и т. д. Таким образом, рассматривая различные управления u(t), мы получим много траекторий, исходящих из точки x0 (рис. 12). (Разумеется, это не противоречит теореме единственности в теории дифференциальных уравнений, так как, заменяя функции u1(t),…,ur(t) другими функциями, мы переходим от системы дифференциальных уравнений относительно фазовых координат x1,…, xn.)

Напомним, что задача оптимального быстродействия заключается в отыскании такого управления u(t), для которого фазовая траектория x(t), соответствующая этому управлению в силу уравнения (1.5), проходит через точку x1 и переход из x0 в x1 осуществляется за кратчайшее время. Такое управление u(t) будем называть оптимальным управлением (в смысле быстродействия); точно так же соответствующую траекторию x(t) буде называть оптимальной траекторией.

4.   Допустимые управления. Обычно управляющие параметры u1,…,ur не могут принимать совершенно произвольные значения, а подчинены некоторым ограничениям. Так, например, в случае объекта, описанного на стр. 4, естественно предположить, что сила u, развиваемая двигателем, не может быть как угодно большой по величине, а подчинена ограничениям αuβ, где α и  β – некоторые постоянные, характеризующие двигатель. В частности, при α=─1, β=1 мы получаем ограничение ─1≤u≤1, которое означает, что двигатель может развивать силу, направленную вдоль оси x1 как в положительном, так и в отрицательном направлении, но не превосходящую единицы по абсолютной величине.

Для объектов, содержащих r управляющих параметров u1,…,ur, в приложениях часто встречается случай, когда эти параметры могут произвольно меняться в следующих пределах:

α1≤u1≤ β1, α2≤u2≤β2,…, αrurβr.

Иначе говоря, каждая из величин u1, u2,…,ur в уравнениях (1.2) представляет собой отдельный управляющий параметр, область изменения которого не зависит от значений остальных

управляющих параметров и задаётся неравенствами

αiuiβi, i=1,…,r.                                                                                  (1.6)

Заметим, что при r=2 точки u=(u1, u2), координаты которых подчинены неравенствам (1.6), заполняют прямоугольник; при r=3 неравенства (1.6) определяют в пространстве переменных u1,u2,u3 прямоугольный параллелепипед; в случае произвольного r говорят, что неравенства (1.6) определяют r-мерный параллелепипед.

В общем случае будем считать, что в соответствии с конструкцией объекта и условиями его эксплуатации задано в пространстве переменных u1,…, ur некоторое множество U и управляющие параметры u1, u2,…, ur должны в каждый момент времени принимать лишь такие значения, чтобы точка u=(u1,u2,…,ur) принадлежала множеству U. Иначе говоря, разрешается рассматривать лишь такие управления u(t), что u(t) U для любого t. Множество U в дальнейшем будем называть областью управления. Область управления U не всегда будет параллелепипедом; она может иметь геометрически более или менее сложный характер, так как в силу конструкции объекта между управляющими параметрами u1, u2,…,ur могут существовать связи, выражаемые, например, уравнениями вида φ(u1, u2,…, ur)=0 или неравенствами ψ(u1, u2,…, ur)≤0. Так, если параметры u1,u2 характеризуют векторную величину на плоскости, модуль которой не превосходит единицы, а направление произвольно, то эти параметры подчинены только одному условию

(u1)2 +(u2)2 ─1≤0                                                                                    (1.7)

и область управления U представляет собой круг. В дальнейшем будем предполагать, что указание области управления входит в математическое определение объекта, т. е. что для математического задания управляемого объекта надо указать закон его движения (1.2) и область управления U.

Наконец, сделаем ещё одно, весьма существенное предположение о характере управлений. Именно, будем предполагать, что «рули», положения которых характеризуются управляющими параметрами u1,u2,…,ur, безынерционны, так что мы можем, если нужно, мгновенно переключать эти «рули» из одного положения в другое, т. е. менять скачком значения управляющих параметров u1,u2,…,ur. В соответствии с этим будем рассматривать не только непрерывные, но и кусочно-непрерывные управления u(t). Кроме того, будем предполагать, что каждое рассматриваемое управление u(t) непрерывно на концах отрезка t0≤tt1, на котором оно  задано, т. е. что все точки разрыва, если они есть, расположены на интервале t0<t<t1. Для удобства условимся называть допустимым управлением всякую кусочно-непрерывную функцию u(t), t0≤tt1, со значениями в области управления U, непрерывную справа в точках разрыва (для определённости нам так удобно предполагать) и непрерывную в концах отрезка [t0; t1], на котором она задана.

Задача об оптимальных быстродействиях уточняется теперь следующим образом:

Среди всех допустимых управлений u=u(t), под воздействием которых управляемый объект (1.3) переходит из заданного начального фазового состояния x0 в предписанное конечное состояние x1, найти такое, для которого этот переход осуществляется за кратчайшее время

§ 2.  Об основных направлениях в теории оптимальных процессов

5.   Метод динамического программирования. Для управляемого объекта, описанного в предыдущем параграфе, мы рассмотрим задачу об оптимальном переходе ─ в смысле быстродействия ─ из фазового состояния x в фазовое состояние x1. При этом конечную фазовую точку x1 будем считать фиксированной, а в качестве начальной точки x будем рассматривать различные точки фазового пространства. Мы будем предполагать в этом пункте, что для рассматриваемого управляемого объекта выполняется следующая гипотеза:

Г и п о т е з а 1. Какова бы ни была отличная от x1 точка x фазового пространства, существует оптимальный (в смысле быстродействия) процесс перехода из точки x0 в точку x1 (рис. 6).

Время, в течение которого осуществляется оптимальный переход из точки x0 в точку x1, обозначим через T(x). В дальнейших рассуждениях будет удобно вместо T(x) ввести функцию ω(x), отличающуюся от неё знаком

ω(x)= ─T(x).                                                                                          (1.8)

Так как каждая точка x фазового пространства имеет координаты x1,…,xn, то ω(x)= ─T(x) является функцией от n переменных, т. е. ω(x)= ω(x1,…,xn). Поэтому имеет смысл говорить о непрерывности этой функции (по совокупности переменных x1,…,xn) и о дифференцируемости этой функции по каждой из переменных x1,…,xn.

А также будем предполагать, что для рассматриваемого управляемого объекта выполняется следующая гипотеза:

Г и п о т е з а 2. Функция ω(x) непрерывна и всюду, кроме точки x1, имеет непрерывные частные производные

Пусть теперь x0 ─ произвольная отличная от x1 точка фазового пространства, а u0 ─ произвольная точка области U. Предположим, что объект находится в момент t0 в фазовом состоянии x0 и движется в течение некоторого  времени под воздействием постоянного управления u= u0. Фазовую траекторию объекта при этом движении обозначим через y(t)=(y1(t),…, yn(t)). Таким образом, фазовая траектория y(t) при t>t0 удовлетворяет уравнениям

                                                               (1.9)

(см. (1.2), (1.3)) и начальному условию

y(t0)=x0.                                                                                                (1.10)

Если мы будем двигаться  из точки x0 до точки y(t) (по рассматриваемой фазовой траектории), то затратим на это движение время tt0. Двигаясь затем из точки y(t) оптимально,  мы затратим на движение от точки y(t) до точки x1 время T(y(t)). В результате мы совершим переход из точки x0 в точку x1, затратив на этот переход время (t t0)+T(y(t)). Но так как оптимальное время движения от точки x0 до точки x1 равно T(x0), т. е. равно T(y(t0)), то T(y(t0))≤(t t0)+T(y(t)). Заменяя функцию T через ω (см. (1.8)) и разделив обе части неравенства на положительную величину t t0, получаем отсюда и поэтому, переходя к пределу при t→t0, находим

│при ≤1.                                                                       (1.11)

Но производная, указанная в левой части этого неравенства, вычисляется по формуле полной производной  Поэтому согласно (1.9) и (1.10) неравенство (1.11) принимает вид  Точки x0, u0 здесь были произвольными. Таким образом, для любой (отличной от x1) точки x фазового пространства и любой точки u области управления U выполнено соотношение

                                                                         (1.12)

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.