скачать рефераты
  RSS    

Меню

Быстрый поиск

скачать рефераты

скачать рефератыРеферат: Синтез оптимальных уравнений

Пусть теперь (u(t), x(t)) ─ оптимальный процесс, переводящий объект из фазового состояния x0 в состояние x1, и t0≤tt1 ─ отрезок времени, в течение которого это оптимальное движение происходит, так что x(t0)= x0, x(t1)=x1 и t1=t0 + T(x0). Движение по рассматриваемой оптимальной траектории от точки x0 до точки x(t) осуществляется в течение времени t t0, а движение от точки x(t) до точки x1 ─ в течение времени T(x0) ─ (t t0). Быстрее, чем за время T(x0) ─ (t t0), из точки x(t) попасть в точку x1 невозможно. Итак, T(x0) ─ (t t0) есть время оптимального движения из точки x(t) в точку x1, т. е. T(x(t))= T(x0) ─ (t t0). Заменив здесь T через ω, т. е. ω(x(t))= ω(x0) + t t0) и взяв производную по t, получаем

 t0≤tt1.                 (1.13)

Таким образом, для каждого оптимального процесса в течение всего движения выполняется равенство (1.13).

Если мы теперь введём в рассмотрение функцию

B(x, u(t))=,                                                              (1.14)

То соотношения (1.12) и (1.13) могут быть записаны следующим образом:

B(x, u)≤1 для всех точек xx1 и u;                                                     (1.15)

B(x, u)≡1 для любого оптимального процесса (u(t), x(t)).              (1.16)

Итак, справедлива следующая

Т е о р е м а 1.1. Если для управляемого объекта, описываемого уравнением (1.5) и предписанного конечного состояния x1 выполнены гипотезы 1 и 2, то имеют место соотношения (1.15) и (1.16) (оптимальность понимается в смысле быстродействия).

Эта теорема и составляет сущность метода динамического программирования для рассматриваемой задачи. Эту теорему можно сформулировать и несколько иначе. Написав соотношение (1.16)

Для t=t0, получим B(x0, u(t0))=1, т. е. для любой точки x0 (отличной от x1) найдётся в U такая точка u (а именно u=u(t0)), что B(x0, u)=1. В сопоставлении с неравенством (1.15) получаем соотношение

 для любой точки xx1.         (1.16*)

Метод динамического программирования (1.15), (1.16) (или, что то же самое, (1.16*), (1.16)) содержит некоторую информацию об оптимальных процессах и потому может быть использован для их разыскания. Однако он имеет ряд неудобств. Во-первых, применение этого метода требует нахождения не только оптимальных управлений, но и функции ω(x), так как эта функция входит в соотношения (1.15) ─ (1.16*). Во-вторых, уравнение Беллмана (1.16*) (или соотношения (1.15), (1.16)) представляет собой уравнение в частных производных относительно функции ω, осложнённое к тому же знаком максимума. Указанные обстоятельства сильно затрудняют возможность пользования методом динамического программирования для отыскания оптимальных процессов в конкретных примерах. Но самым главным недостатком этого метода является предположение о выполнении гипотез 1 и 2. Ведь оптимальные управления и функция ω нам заранее не известны, так что гипотезы 1 и 2 содержат предположение о неизвестной функции, и проверить выполнение этих гипотез по уравнениям движения объекта невозможно. Этот недостаток можно было бы считать не особенно существенным, если бы после решения оптимальной задачи этим методом оказалось, что функция ω(x) действительно является непрерывно дифференцируемой. Но дело заключается в том, что даже в простейших, линейных задачах оптимального управления функция ω(x) не является, как правило, всюду дифференцируемой. Тем не менее, методом динамического программирования можно нередко пользоваться как ценным эвристическим средством.

6.   Принцип максимума. Продолжим теперь рассуждения предыдущего пункта, предположив функцию ω(x) уже дважды непрерывно дифференцируемой (всюду, кроме точки x1). Итак, будем предполагать, что выполнена следующая

Г и п о т е з а 3. функция ω(x) имеет при x≠x1 вторые непрерывные производные  i, j=1,2,…,n, а функции fi(x, u) ─ первые непрерывные производные  где  i, j=1,2,…,n.

Пусть  (u(t), x(t)), t0≤tt1, ─ оптимальный процесс, переводящий объект (1.2) (или (1.3)) из фазового состояния x0 в состояние x1. Фиксируем некоторый момент времени t, t0≤tt1, и рассмотрим функцию B(x, u(t))= переменного x. В силу гипотезы 3 вытекает, что функция B(x, u(t)) всюду, кроме точки x1, имеет непрерывные производные по переменным x1,x2,…,xn:

       (1.17)

В частности, так как x(t)≠x1 (поскольку t<t1), то функция B(x, u(t)) имеет вблизи точки x=x(t) непрерывные производные по переменным x1,x2,…,xn. Далее, мы имеем в силу (1.15), (1.16) B(x, u(t))≤1 для любого x≠x1; B(x, u(t))=1 при x=x(t).

Эти два соотношения означают, что функция B(x,u(t)) достигает в точке x=x(t) максимума, и потому её частные производные по x1,…,xn обращаются в нуль в этой точке:

      (1.18)

Кроме того, дифференцируя функцию  по t, находим

Поэтому соотношение (1.18) может быть переписано в следующем виде:

                  (1.19)

Заметим теперь, что в формулы (1.15), (1.16), (1.17) и (1.19) сама функция ω не входит, а входят только её частные производные . Поэтому мы введём для удобства следующие обозначения:

                        (1.20)

Тогда функция B (см. (1.14)) записывается таким образом:

B(x(t), u(t))=

и соотношение (1.16) принимает вид

, для оптимального процесса (x(t), u(t)), t0≤t<t1.          (1.21)

Кроме того, согласно (1.15)

 для любой точки uU и всех t0≤t<t1.            (1.22)

Наконец, соотношения (1.19) записываются следующим образом:

                                    (1.23)

Итак, если (u(t), x(t)), t0≤t<t1, ─ оптимальный процесс, то существуют такие функции ψ1(t), ψ2(t),…, ψn(t) (они определяются равенствами (1.20)), что имеют место соотношения (1.21), (1.22), (1.23).

Рассмотрение левых частей соотношений (1.21), (1.22) подсказывает нам, что целесообразно ввести в рассмотрение следующую функцию:

                 (1.24)

зависящую от 2n+r аргументов ψ1, ψ2,…, ψn, x1,…, xn, u1,…, ur. С помощью этой функции соотношения (1.21), (1.22) записываются в следующем виде:

  для оптимального процесса (u(t), x(t)),  t0≤t<t1,            (1.25)

где ψ(t)=(ψ1(t),…,ψn(t)) определяются равенствами (1.20);

для любой точки uU и всех t0≤t<t1.                              (1.26)

Вместо неравенства (1.26) мы можем в силу (1.25) написать следующее соотношение:

 t0≤t<t1.                              (1.27)

Наконец, соотношения (1.23) можно, очевидно, переписать так:

                                           (1.28)

Итак, если (u(t), x(t)), t0≤t<t1, ─ оптимальный процесс, то существует такая функция ψ(t)=(ψ1(t),…, ψn(t)), что выполняются соотношения (1.25), (1.27), (1.28), где функция H определяется соотношением (1.24).

Так как в соотношениях (1.24), (1.25), (1.27), (1.28) нигде не участвует явно функция ω(x), то равенства (1.20), выражающие функции ψ1(t),…, ψn(t) через ω, никаких добавочных сведений не дают, и о них можно забыть, ограничившись утверждением, что какие-то функции ψ1(t),…, ψn(t), удовлетворяющие перечисленным соотношениям (1.25), (1.27), (1.28), существуют. Соотношения (1.28) представляют собой систему уравнений, которым эти функции удовлетворяют. Заметим, что функции ψ1(t),…, ψn(t) составляют нетривиальное решение этой системы (т. е. ни в какой момент времени t все эти функции одновременно в нуль не обращаются); действительно, если бы при некотором t было ψ1(t)= ψ2(t)=…=ψn(t)=0, то в силу (1.24) мы получили бы H(ψ(t), x(t), u(t))=0, что противоречит равенству (1.25). Таким образом, мы получаем следующую теорему, которая носит название принципа максимума.

Т е о р е м а 1.2. Предположим, что для рассматриваемого управляемого объекта, описываемого уравнением (в векторной форме)

                                                                                   (A)

и предписанного конечного состояния x1 выполнены гипотезы 1, 2 и 3. Пусть (u(t), x(t)), t0≤tt1, ─ некоторый процесс, переводящий объект из начального состояния x0 в состояние x1. Введём в рассмотрение функцию H, зависящую от переменных x1(t),…, xn(t), u1,…,ur и некоторых вспомогательных переменных ψ1(t),…, ψn(t) (см. (1.24)):

                                                                       (B)

С помощью этой функции H запишем следующую систему дифференциальных уравнений для вспомогательных переменных:

                                                       (C)

где (u(t), x(t)) ─ рассматриваемый процесс (см. (1.28)). Тогда, если процесс (u(t), x(t)), t0≤t<t1, является оптимальным, то существует такое нетривиальное решение ψ(t)=(ψ1(t),…, ψn(t)), t0≤t<t1, системы (C), что для любого момента t, t0≤t<t1, выполнено условие максимума

                                               (D)

(см. (1.27)) и условие (1.25) H(ψ(t),x(t),u(t))=1.

Однако в приведённой здесь форме принцип максимума страдает одним недостатком: он выведен в предположение дифференцируемости (и даже двукратной) функции ω(x), а эта функция в действительности не является (в обычно встречающихся случаях) всюду дифференцируемой.

Из-за предположения о выполнении сформулированных гипотез (о функции ω(x))  принцип максимума в том виде, в каком он сформулирован выше, не является удобным условием оптимальности. По форме он выведен как необходимое условие оптимальности: если процесс оптимален, то выполнено соотношение (1.16*) и соответственно (D), т. е. выполнение этого условия необходимо для оптимальности. Однако это условие выведено лишь в предположении выполнения гипотез 1, 2, 3, а их выполнение отнюдь не необходимо для оптимальности. Вот почему сформулированные выше теоремы не могут считаться необходимыми условиями оптимальности.

Замечательным, однако, является тот факт, что если в теореме 1.2 решение ψ(t) и условие максимума (D) рассматривать на всём отрезке t0≤tt1 (а не только при t0≤t<t1), а заключительное условие

 H(ψ(t1), x(t1), u(t1))≥0,                                                                             (E)

то в этой форме принцип максимума будет справедлив без каких бы то ни было предположений о функции ω, т. е. принцип максимума станет весьма удобным и широко применимым необходимым условием оптимальности.

§ 3.  Пример. Задача синтеза

7.   Пример применения принципа максимума. В этом пункте мы разберём один пример вычисления оптимальных процессов. Именно, рассмотрим управляемый объект, упомянутый в п. 3 (см. уравнения (1.1)), при условии, что сила трения и упругая сила отсутствуют (т. е. b=0, k=0), масса m равна единице (m=1), а управляющий параметр подчинён ограничениям |u|≤1. Иначе говоря, мы рассматриваем материальную точку G массы m=1 (см. рис. 10), свободно и без трения движущуюся по горизонтальной прямой и снабжённую двигателем, развивающим силу u, где |u|≤1. Согласно (1.1) уравнения движения этого объекта имеют вид:

                                                                                            (1.29)

─1≤u≤1.                                                                                               (1.30)

Страницы: 1, 2, 3, 4, 5


Новости

Быстрый поиск

Группа вКонтакте: новости

Пока нет

Новости в Twitter и Facebook

  скачать рефераты              скачать рефераты

Новости

скачать рефераты

© 2010.